首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  2022年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2013年   6篇
  2011年   1篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  1980年   1篇
排序方式: 共有23条查询结果,搜索用时 218 毫秒
1.
The aim of this work was to study the dityrosine-forming activity of lactoperoxidase (LPO) and its potential application for measuring hydrogen peroxide (H2O2). It was observed that LPO was able to form dityrosine at low H2O2 concentrations. Since dityrosine concentration could be measured in a simple fluorimetric reaction, this activity of the enzyme was utilized for the measurement of H2O2 production in different systems. These experiments successfully measured the activity of NADPH oxidase 4 (Nox4) by this method. It was concluded that LPO-mediated dityrosine formation offers a simple way for H2O2 measurement.  相似文献   
2.
Specific features of metal-catalyzed oxidation (MCO) of purified proteins (human serum albumin and human erythrocyte superoxide dismutase) were analyzed by the oxidation level of tryptophan and tyrosine. The production of dityrosine cross-links and the oxidation of tryptophan residues were recorded by fluorescence. The degree of oxidative modification of the amino acid residues of the proteins depended on the concentration of the Fenton's medium components and on the incubation time. These changes were different in different proteins. By electrophoresis and gel-permeation chromatography, changes in the superoxide dismutase structure are shown to be caused by oxidative modification of the enzyme and to be accompanied by a decrease in its activity. Findings with OH. scavengers (mannitol and ethanol) suggest that oxidative modification of the proteins in Fenton's medium should be associated not only with hydroxyl radical but also with ferryl and perferryl ions and with the radical PH3.  相似文献   
3.
Myeloperoxidase (MPO), a heme protein existing in neutrophil and monocyte, is implicated in various stages of inflammatory conditions with the production of a variety of potent oxidants. To investigate the extent of the involvement of MPO in aging, we measured MPO activities in kidney of rats at different ages maintained with an ad libitum (AL) or a calorie restriction (CR) dietary regimen. Results showed that the MPO activities increased during aging in AL rats, but were significantly attenuated by CR. This result was consistent with altered protein level of MPO during aging. In addition, we were able to detect dityrosine that is a stable end MPO-oxidation product. The amount of dityrosine increased in old AL, but not in old CR rats. To examine the source responsible for increased MPO activity during aging for leukocyte recruitment and infiltration, the levels of vascular cell adhesion molecule (VCAM-1) protein were measured. The level of VCAM-1 showed age-dependent increase in AL rats, which was correlated with higher activity of MPO in old AL rats. Furthermore, we have found that LPS-induced inflammation increased the activity and protein levels of MPO, and VCAM-1 expression in young rat kidneys. These findings suggest that increased MPO activity with aging may related to increased recruitment of inflammatory cells, contributing to protein oxidation accumulation in the aging process. We propose that age-related alterations of MPO, dityrosine, and VCAM were modulated by CR through its anti-inflammatory action.  相似文献   
4.
Myeloperoxidase, a heme protein expressed by professional phagocytic cells, generates an array of oxidants which are proposed to contribute to tissue damage during inflammation. We now report that enzymatically active myeloperoxidase and its characteristic amino acid oxidation products are present in human brain. Further, expression of myeloperoxidase is increased in brain tissue showing Alzheimer's neuropathology. Consistent with expression in phagocytic cells, myeloperoxidase immunoreactivity was present in some activated microglia in Alzheimer brains. However, the majority of immunoreactive material in brain localized with amyloid plaques and, surprisingly, neurons including granule and pyramidal neurons of the hippocampus. Confirming neuronal localization of the enzyme, several neuronal cell lines as well as primary neuronal cultures expressed myeloperoxidase protein. Myeloperoxidase mRNA was also detected in neuronal cell lines. These results reveal the unexpected presence of myeloperoxidase in neurons. The increase in neuronal myeloperoxidase expression we observed in Alzheimer disease brains raises the possibility that the enzyme contributes to the oxidative stress implicated in the pathogenesis of the neurodegenerative disorder.  相似文献   
5.
The interaction of Leucine-enkephalin (Leu-enkephalin) with reactive nitrogen species has been investigated. Reactive nitrogen species are capable of nitrating and oxidizing Leu-enkephalin. HPLC analysis shows the formation of two major enkephalin derivatives by peroxynitrite. The tyrosine amino-terminal residue of Leu-enkephalin is converted either to 3-nitrotyrosine thus producing nitroenkephalin and to dityrosine by dimerization with the production of an enkephalin dimer. The evidence of the formation of the nitroenkephalin and of the enkephalin dimer—dienkephalin—was achieved by electrospray ionisation mass spectrometry. In addition to peroxynitrite, the methylene blue photosensitized oxidation of enkephalin in the presence of nitrite leads to the formation of the nitrated peptide. Moreover, the nitropeptide can be also obtained by peroxidase-generated nitrogen reactive species.  相似文献   
6.
The minireview summarizes the recent preparation of thefollowing unusually modified combinatorial peptide collectionsuseful for diagnostics and screening in drug finding. Tissuetransglutaminase catalyzes cross couplings with transamidationbetween Gln and Lys peptide chains resulting in libraries withisopeptide bonds. The enzyme is involved in the triggering ofautoantigenic B- and T-cell epitopes of coeliac disease. Themicrobial enzyme EpiD involved in lantibiotic biosynthesiscatalyzes oxidative decarboxylation of C-terminal cysteineresidues in peptide libraries transforming peptidyl-cysteinesto peptide (2-mercaptovinyl)amides. Novel backbone modifiedpeptide libraries are prepared using oxazole and thiazolebuilding blocks carrying amino acid side chains. These aminoacids have been found in many biologically active naturalproducts from marine and microbial organisms such as microcinB17. Dityrosine and isodityrosine linked peptide dimerlibraries are accessible by oxidative phenol coupling usinghorseradish peroxidase. Such structural elements are found forexample in the polycyclic glycopeptide antibiotics of thevancomycin type. Microstructured layers of linear and cyclicpeptide libraries are generated on transducer surfaces forcellular assays, sensor developments and even chiralrecognition. Examples include a light-directed andmicrostructured electrochemical polymerization of phenollabelled peptides.  相似文献   
7.
The effects of adding hydrogen peroxide and peroxidase to wheat-flour dough on dityrosine formation and mixing characteristics were investigated. Dityrosine in wheat-flour dough was identified by HPLC with a fluorescence detector and by LC/MS/MS. Formation of dityrosine increased with the addition of hydrogen peroxide, and hydrogen peroxide plus peroxidase, to wheat-flour dough, while the addition of peroxidase had no effect on the amount of dityrosine formed. The mixing curve obtained by a doughgraph changed with the addition of hydrogen peroxide, and hydrogen peroxide plus peroxidase; the peak time was significantly delayed and the dough development time was extended. We found that dityrosine cross-links in wheat-flour dough increased with the addition of peroxidase plus hydrogen peroxide. It is thought that these cross-links can lead to polymerization of the proteins in wheat-flour dough.  相似文献   
8.
The dityrosine bond (DT) is an oxidative covalent cross-link between two tyrosines. DT cross-linking is increasingly identified as a marker of oxidative stress, aging and disease, and has been detected in diverse pathologies. While DT cross- linked proteins have been documented, the consequences of the DT link on the structure and function of the so modified proteins are yet to be understood. With this in view, we have studied the properties of intermolecular DT-dimers of four proteins of diverse functions, namely the enzyme ribonuclease A, the signal protein calmodulin, and the eye lens proteins alpha- and gamma B-crystallins. We find that DT is formed through radical reactions and type I photosensitization (including OH, O2 and OONO), but not by 1O2 and NO2 (which modify his, trp and met more readily). Tyr residues on the surface of the protein make DT bonds (intra- and intermolecular) most readily and preferentially. The conformation of each of these DT-dimers, monitored by spectroscopy, is seen not to be significantly altered in comparison to that of the parent monomer, but the structural stability of the DT cross-linked molecule is lower than that of the parent native monomer. The DT-dimer is denatured at a lower temperature, and at lower concentrations of urea or guanidinium chloride. The effect of DT-cross-linking on the biological activities of these proteins was next studied. The enzymatic activity of the DT-dimer of ribonuclease A is not lost but lowered. DT-dimerization of lens alpha-crystallin did not significantly affect the chaperone-like ability; it inhibits the self-aggregation and precipitation of target proteins just as well as the parent, unmodified alpha-crystallin does. DT-dimerization of gamma B-crystallin is however seen to lead to more ready aggregation and precipitation, a point of interest in cataract. In the case of calmodulin, we could generate both intermolecular and intramolecular DT cross-linking, and study both the DT-dimer and DT-monomer. The DT-dimer binds smooth muscle light chain kinase and also Ca2+, but less efficiently and over a broad concentration range than the native monomer. The intramolecular DT-monomer is weaker in all these respects, presumably since it is structurally more constrained. These results suggest that DT cross-linking of globular proteins weakens their structural stability and compromises (though does not abolish) their biological activity, both of which are pathologically relevant. The intramolecular DT cross-link would appear to lead to more severe structural and functional consequences.  相似文献   
9.
Urinary biomarkers of oxidative stress have been little studied in adults with Down syndrome (DS), usually no more than two biomarkers have been measured in the population studied and controversial results are reported in literature. Thus, we aimed to assess a set of oxidative and nitrosative stress biomarkers in urine samples of adolescents and adults with DS, with and without hypothyroidism, which comprise: 8-hydroxy-2′-deoxyguanosine (8-OHdG), isoprostane 15-F2t-IsoP, thiobarbituric acid-reacting substances (TBARS), advanced glycation end products (AGEs), dityrosine (diTyr), hydrogen peroxide (H2O2) and nitrite/nitrate (NOx). Fluorimetric and spectrophotometric assays were performed in DS (n = 78), some of them taking levothyroxine for hypothyroidism (n = 24), and in their healthy age-matched controls (n = 65). We found that levels of AGEs, diTyr, H2O2 and NOx are increased in DS patients in any or in all age groups, whereas Cr levels were lower in DS than in controls in all age groups. Besides, correlations with age in DS were positive for diTyr and negative for Cr, TBARS, 15-F2t-IsoP and NOx. We also found lower levels of Cr from 15 to 19 years, higher levels of TBARS and AGEs from 20 to 40 years and higher levels of diTyr from 15 to 40 years in DS patients receiving levothyroxine than in DS without hypothyroidism diagnosed. We conclude that AGEs, diTyr, H2O2 and NOx could be used as oxidative stress biomarkers in DS in contrast to 8-OHdG, 15-F2t-IsoP and TBARS, at least with the methods used. However, renal impairment could occur in DS and Cr adjustment may bias the results, particularly in hypothyroid patients.  相似文献   
10.
The protective activity of hypotaurine (HTAU) and cysteine sulphinic acid (CSA) on peroxynitrite-mediated oxidative damage has been assessed by monitoring different target molecules, i.e. tyrosine, dihydrorhodamine-123 (DHR) and glutathione (GSH). The inhibition of tyrosine oxidation exerted by HTAU and CSA both in the presence and the absence of bicarbonate can be ascribed to their ability to scavenge hydroxyl (?OH) and carbonate (CO3??) radicals. HTAU and CSA also reduce tyrosyl radicals, suggesting that this repair function of sulphinates might operate as an additional inhibiting mechanism of tyrosine oxidation. In the peroxynitrite-dependent oxidation of DHR, the inhibitory effect of HTAU was lower than that of CSA. Moreover, while HTAU and CSA competitively inhibited the direct oxidation of GSH by peroxynitrite, HTAU was again poorly effective against the oxidation of GSH mediated by peroxynitrite-derived radicals. The possible involvement of secondary reactions, which could explain the difference in antioxidant activity of HTAU and CSA, is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号