首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   970篇
  免费   137篇
  国内免费   53篇
  2024年   2篇
  2023年   10篇
  2022年   15篇
  2021年   14篇
  2020年   18篇
  2019年   46篇
  2018年   29篇
  2017年   17篇
  2016年   25篇
  2015年   44篇
  2014年   42篇
  2013年   91篇
  2012年   33篇
  2011年   49篇
  2010年   49篇
  2009年   48篇
  2008年   44篇
  2007年   48篇
  2006年   64篇
  2005年   50篇
  2004年   65篇
  2003年   50篇
  2002年   35篇
  2001年   30篇
  2000年   27篇
  1999年   25篇
  1998年   27篇
  1997年   24篇
  1996年   16篇
  1995年   22篇
  1994年   16篇
  1993年   18篇
  1992年   13篇
  1991年   6篇
  1990年   3篇
  1989年   5篇
  1988年   6篇
  1986年   3篇
  1985年   4篇
  1984年   6篇
  1983年   5篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
  1974年   2篇
  1971年   1篇
排序方式: 共有1160条查询结果,搜索用时 15 毫秒
1.
Treatment of a mixture of Cys(R)(O) and Cys(R) with an acid was found to generate cystine in fairly good yields, when suitable R, R, and an acid were selected. An unsymmetrical cystine peptide was prepared by treatment of a mixture of Z(OMe)-Cys(R) (0)-Ala-NH2 (R=Acm or MBzl) and Z(OMe)-Cys(MBzl)-Gly-OBzl with TFA or 1 M TFMSA/TFA.3 Oxytocin was obtained in an excellent yield by TFA treatment of the protected peptide containing Cys(Acm)(0) and Cys(MBzl). Thus, formation of the disulfide bond was found feasible at the position of Cys(R) (0).The following abbreviations are used Boc t-butyloxycarbonyl - Z(OMe) p-methoxybenzyloxycarbonyl - MBzl p-methoxybenzyl - Acm acetamidomethyl - Bzl benzyl - Ad l-adamantyl - tBu t-butyl - TFA trifluoroacetic acid - TFMSA trifluoromethanesulfonic acid - TMSOTf trimethylsilyl trifluoromethane sulfonate  相似文献   
2.
Prolyl 4-hydroxylase, a key enzyme in collagen biosynthesis, catalyzes the conversion of selected prolyl residues to trans-hydroxyproline in nascent or completed pro-alpha chains of procollagen. The enzyme is a tetramer composed of two nonidentical subunits, designated alpha and beta. To compare the enzyme and its subunits from different sources, the chick embryo and human placental prolyl 4-hydroxylases were purified to homogeneity and their physicochemical and immunological properties were determined. Both enzymes were glycoproteins with estimated apparent molecular weights ranging between 400 and 600 kDa. Amino acid and carbohydrate analyses showed slight differences between the two holomeric enzymes, consistent with their deduced amino acid sequences from their respective cDNAs. Human placental prolyl 4-hydroxylase contained more tightly bound iron than the chick embryo enzyme. Immunodiffusion of the human placental enzyme with antibodies raised against the purified chick embryo prolyl 4-hydroxylase demonstrated partial identity, indicating different antigenic determinants in their tertiary structures. The enzymes could be separated by high-resolution capillary electrophoresis, indicating differential charge densities for the native chick embryo and human placental proteins. Electrophoretic studies revealed that the human prolyl 4-hydroxylase is a tetrameric enzyme containing two nonidentical subunits of about 64 and 62 kDa, in a ratio of approximately 1 to 2, designated alpha and beta, respectively. In contrast, the chick embryo alpha and beta subunit ratio was 1 to 1. Notably, the human alpha subunit was partially degraded when subjected to electrophoresis under denaturing conditions. Analogously, when the chick embryo enzyme was subjected to limited proteolysis, selective degradation of the alpha subunit was observed. Finally, only the alpha subunit was bound to Concanavalin A demonstrating that the alpha subunits of prolyl 4-hydroxylase in both species were glycosylated. Using biochemical techniques, these results demonstrated that the 4-trans-hydroxy-L-proline residues in human placental collagens are synthesized by an enzyme whose primary structure and immunological properties differ from those of the previously well-characterized chick embryo enzyme, consistent with their recently deduced primary structures from cDNA sequences.  相似文献   
3.
Summary Unproteolyzed gap junctions isolated from rat heart and liver were analyzed for the presence of inter-subunit disulfide bonds by sodium dodecylsulfate polyacrylamide gel electrophoresis. Rat cardiac junctions contained multiple disulfide bonds connecting theM r 47,000 subunits of the same connexon and of different connexons. Inter-subunit disulfide bonds were absent in liver junctions. Unproteolyzed rat heart gap junctions were resistant to deoxycholate in their oxidized state, but dissolved readily in the detergent when the disulfide bonds were cleaved with -mercaptoethanol. Disulfide bonding in proteolyzed cardiac junctions was limited to pairs ofM r 29,500 subunits. These junctions were not soluble in deoxycholate even in the presence of -mercaptoethanol. These results show that heart and liver junctions differ in their quarternary organization.  相似文献   
4.
Refinement of distance geometry (DG) structures of EETI-II (Heitz et al.: Biochemistry 28:2392-2398, 1989), a member of the squash family trypsin inhibitor, have been carried out by restrained molecular dynamics (RMD) in water. The resulting models show better side chain apolar/polar surface ratio and estimated solvation free energy than structures refined "in vacuo." The consistent lower values of residual NMR constraint violations, apolar/polar surface ratio, and solvation free energy for one of these refined structures allowed prediction of the 3D folding and disulfide connectivity of EETI-II. Except for the few first residues for which no NMR constraints were available, this computer model fully agreed with X-ray structures of CMTI-I (Bode et al.: FEBS Lett. 242:285-292, 1989) and EETI-II complexed with trypsin that appeared after the RMD simulation was completed. Restrained molecular dynamics in water is thus proved to be highly valuable for refinement of DG structures. Also, the successful use of apolar/polar surface ratio and of solvation free energy reinforce the analysis of Novotny et al. (Proteins 4:19-30, 1988) and shows that these criteria are useful indicators of correct versus misfolded models.  相似文献   
5.
Human neurotrophin-3 (NT-3) is a member of the nerve growth factor (NGF) family of neurotrophic factors, and the recombinant protein is being developed as a therapeutic for neurodegenerative diseases. The final product purity and lot-to-lot variation are monitored routinely by peptide mapping. However, only the N-terminal region of NT-3 was susceptible to proteolysis under native conditions. Complete digestion required that the protein be chemically modified by reduction and S-alkylation prior to proteolysis. Complete proteolytic degradation of the protein was achieved simply by an intial denaturation of NT-3 in 6 M guanidinium chloride (pH 6) for 2 hr at 37°C, followed by a tenfold dilution with the digestion buffer (0.1 M Tris-HCl, 1 mM CaCl2 at pH 7.0) and immediate addition of chymotrypsin at 1% by weight. Direct comparison of the peptide map with an identical aliquot that had been reduced and alkylated also allowed the establishment of the cystine linkages present in NT-3: Cys14 to Cys79, Cys57 to Cys108, and Cys67 to Cys110. This disulfide structure is homologous to the NGF family of neurotrophic factors.  相似文献   
6.
The 33 kDa protein of Photosystem II has one intrachain disulfide bond. Fluorescence spectroscopy shows that the major groups in the protein that bind to Ca2+ should be the carboxylic side groups of glutamic acid and/or aspartic acid. Fluorescence and Fourier-transform infrared (FTIR) spectroscopic studies indicate that the conformation of the 33 kDa protein is altered upon reduction, while the reduced protein still retains the secondary structure. FTIR spectroscopy also shows that the metal ions induce a relative decrease of unordered structure and -sheet, and a substantial increase of -helix in both the intact and the reduced 33 kDa protein. This indicates that the addition of cations results in a much more compact structure and that both the intact and the reduced 33 kDa proteins have the ability to bind calcium. The above results may suggest that the disulfide bridge is not essential for calcium binding.Abbreviations CD circular dichroism - FTIR Fourier transform infrared - La lanthanum - PS photosystem - Tb terbium  相似文献   
7.
The formation of native disulfide bonds during in vitro protein folding can be limiting in obtaining biologically active proteins. Thus, optimization of redox conditions can be critical in maximizing the yield of renatured, recombinant proteins. We have employed a folding model, that of the beta subunit of human chorionic gonadotropin (hCG- beta), to investigate in vitro oxidation conditions that facilitate the folding of this protein, and have compared the in vitro rates obtained with the rate of folding that has been observed in intact cells. Two steps in the folding pathway of hCG-beta were investigated: the rate-limiting events in the folding of this protein, and the assembly of hCG-beta with, hCG-alpha. The rates of these folding events were determined with and without protein disulfide isomerase (PDI) using two different types of redox reagents: cysteamine and its oxidized equivalent, cystamine, and reduced and oxidized glutathione. Rates of the rate-limiting folding events were twofold faster in cysteamine/cystamine redox buffers than in glutathione buffers in the absence of PDI. Optimal conditions for hCG-beta folding were attained in a 2 mM glutathione buffer, pH 7.4, that contained 1 mg/mL PDI and in 10muM cysteamine/cystamine, pH 8.7, without PDI. Under these conditions, the half-time of the ratelimiting folding event was 16 to 20 min and approached the rate observed in intact cells (4 to 5 min). Moreover, folding of the beta subunit under these conditions yields a functional protein, based on its ability to assemble with the alpha subunit. The rates of assembly of hCG-beta with hCG-alpha in the cysteamine/cystamine or glutathione/PDI redox buffers were comparable (t(1/2/sb> = 9 to 12 min)). These studies show that rates of folding and assembly events that involve disulfide bond formation can be optimized by a simple buffer system composed of cysteamine and cystamine. (c) 1994 John Wiley & Sons, Inc.  相似文献   
8.
An NADH oxidase activity of animal and plant plasma membrane is described that is stimulated by hormones and growth factors. In plasma membranes of cancer cells and tissues, the activity appears to be constitutively activated and no longer hormone responsive. With drugs that inhibit the activity, cells are unable to grow although growth inhibition may be more related to a failure of the cells to enlarge than to a direct inhibition of mitosis. The hormone-stimulated activity in plasma membranes of plants and the constitutively activated NADH oxidase in tumor cell plasma membranes is inhibited by thiol reagents whereas the basal activity is not. These findings point to a thiol involvement in the action of the activated form of the oxidase. NADH oxidase oxidation by Golgi apparatus of rat liver is inhibited by brefeldin A plus GDP. Brefeldin A is a macrolide antibiotic inhibitor of membrane trafficking. A model is presented where the NADH oxidase functions as a thiol-disulfide oxidoreductase activity involved in the formation and breakage of disulfide bonds. The thiol-disulfide interchange is postulated as being associated with physical membrane displacement as encountered in cell enlargement or in vesicle budding. The model, although speculative, does provide a basis for further experimentation to probe a potential function for this enzyme system which, under certain conditions, exhibits a hormone- and growth factor-stimulated oxidation of NADH.  相似文献   
9.
To assess the respective roles of local and long-range interactions during protein folding, the influence of the native disulfide bonds on the early formation of secondary structure was investigated using continuous-flow circular dichroism. Within the first 4 ms of folding, lysozyme with intact disulfide bonds already had a far-UV CD spectrum reflecting large amounts of secondary structure. Conversely, reduced lysozyme remained essentially unfolded at this early folding time. Thus, native disulfide bonds not only stabilize the cfinal conformation of lysozyme but also provide, in early folding intermediates, the necessary stabilization that favors the formation of secondary structure.  相似文献   
10.
The Cys 2-Cys 10 disulfide bond in ribonuclease T1 was broken by substituting Cys 2 and Cys 10 by Ser and Asn, respectively, as present in ribonuclease F1. This C2S/C10N variant resembles the wild-type protein in structure and in catalytic activity. Minor structural changes were observed by 2-dimensional NMR in the local environment of the substituted amino acids only. The thermodynamic stability of ribonuclease T1 is strongly reduced by breaking the Cys 2-Cys 10 bond, and the free energy of denaturation is decreased by about 10 kJ/mol. The folding mechanism is not affected, and the trans to cis isomerizations of Pro 39 and Pro 55 are still the rate-limiting steps of the folding process. The differences in the time courses of unfolding and refolding are correlated with the decrease in stability: the folding kinetics of the wild-type protein and the C2S/C10N variant become indistinguishable when they are compared under conditions of identical stability. Apparently, the Cys 2-Cys 10 disulfide bond is important for the stability but not for the folding mechanism of ribonuclease T1. The breaking of this bond has the same effect on stability and folding kinetics as adding 1 M guanidinium chloride to the wild-type protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号