首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1031篇
  免费   27篇
  国内免费   4篇
  2023年   9篇
  2022年   12篇
  2021年   6篇
  2020年   12篇
  2019年   14篇
  2018年   28篇
  2017年   7篇
  2016年   6篇
  2015年   10篇
  2014年   72篇
  2013年   77篇
  2012年   12篇
  2011年   34篇
  2010年   54篇
  2009年   63篇
  2008年   40篇
  2007年   59篇
  2006年   52篇
  2005年   47篇
  2004年   18篇
  2003年   19篇
  2002年   11篇
  2001年   13篇
  2000年   9篇
  1999年   19篇
  1998年   8篇
  1997年   9篇
  1996年   8篇
  1995年   6篇
  1994年   6篇
  1993年   5篇
  1992年   4篇
  1991年   7篇
  1990年   6篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   15篇
  1984年   50篇
  1983年   47篇
  1982年   46篇
  1981年   29篇
  1980年   36篇
  1979年   27篇
  1978年   11篇
  1977年   11篇
  1976年   3篇
  1975年   8篇
  1974年   5篇
排序方式: 共有1062条查询结果,搜索用时 15 毫秒
1.
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.  相似文献   
2.
Despite similarities of cellular membranes in all eukaryotes, every compartment displays characteristic and often unique features which are important for the functions of the specific organelles. In the present study, we biochemically characterized the plasma membrane of the methylotrophic yeast Pichia pastoris with emphasis on the lipids which form the matrix of this compartment. Prerequisite for this effort was the design of a standardized and reliable isolation protocol of the plasma membrane at high purity. Analysis of isolated plasma membrane samples from P. pastoris revealed an increase of phosphatidylserine and a decrease of phosphatidylcholine compared to bulk membranes. The amount of saturated fatty acids in the plasma membrane was higher than in total cell extracts. Ergosterol, the final product of the yeast sterol biosynthetic pathway, was found to be enriched in plasma membrane fractions, although markedly lower than in Saccharomyces cerevisiae. A further characteristic feature of the plasma membrane from P. pastoris was the enrichment of inositol phosphorylceramides over neutral sphingolipids, which accumulated in internal membranes. The detailed analysis of the P. pastoris plasma membrane is discussed in the light of cell biological features of this microorganism especially as a microbial cell factory for heterologous protein production.  相似文献   
3.
Phospholipase activities of rat intestinal mucosa homogenate have been determined from lysophosphatidylcholines [14C] and phosphatidylcholines [-3H-14C]. In the presence of phosphatidylcholines, at pH 6.5, the homogenate has a phospholipase B activity. At pH 8.5, a phospholipase A2 activity was shown. In the presence of lysophospatidylcholines, at pH 6.5, we notice a lysophospholipase A1 activity. A kinetic study of the reactions allows us to separate the activity B into a phospholipase A2 activity and a lysophospholipase A1 activity. Thus, it appears that the total phospholipase activity of rat intestinal mucosa would results from a phospholipase A2 activity and a lysophospholipase A1 activity.  相似文献   
4.
A critical review of the experimental literature concerning the metabolism of all-cis-4, 7, 10, 13, 16, 19-docosahexaenoate-containing phospholipids in muscle and retina suggests that it plays an essential role in maximizing the Ca2+/ATP stoichiometry of the Ca2+-ATPase of sarcoplasmic reticulum and retinal photoreceptor disks. Docosahexaenoate-phosphatidylcholine is proposed to participate in oligomerization of Ca2+-ATPase necessary for the establishment of a high Ca2+/ATP coupling ratio of the Ca2+ pump in these tissues. Possible tests of this hypothesis are presented.  相似文献   
5.
There is much evidence that G-proteins transduce the signal from receptors for Ca2+-mobilizing agonists to the phospholipase C that catalyzes the hydrolysis of phosphoinositides. However, the specific G-proteins involved have not been identified. We have recently purified a 42 kDa protein from liver that activates phosphoinositide phospholipase C and cross-reacts with antisera to a peptide common to G-protein -subunits. It is proposed that this protein is the a-subunit of the G-protein that regulates the phospholipase in this tissue.Ca2+-mobilizing agonists and certain growth factors also promote the hydrolysis of phosphatidylcholine through the activation of phospholipases C and D in many cell types. This yields a larger amount of diacylglycerol for a longer time than does the hydrolysis of inositol phospholipids. Consequently phosphatidylcholine breakdown is probably a major factor in long-term regulation of protein kinase C. The functions of phosphatidic acid produced by phospholipase D are speculative, but there is evidence that it is a major source of diacylglycerol in many cell types. The regulation of phosphatidylcholine phospholipases is multiple and involves direct activation by G-proteins, and regulation by Ca2+ protein kinase C and perhaps growth factor receptor tyrosine kinases.  相似文献   
6.
The comparative effects of insulin and ethanolamine on 14CO2 production and lipid synthesis from [U-14C]-D-glucose in isolated rat adipocytes were studied. Ethanolamine (10 mM) increased 14CO2 production (glucose oxidation) about 5-fold and lipogenesis about 3-fold as compared to the control. Ethanolamine was more efficient than 25 microU/ml insulin regarding both parameters, but it was less efficient than 200 microU/ml insulin in glucose oxidation, and equally potent in lipogenesis. The combination of ethanolamine and insulin was more active than insulin alone. The mechanisms of ethanolamine action include facilitation of glucose transport and increase of pyruvate dehydrogenase activity.  相似文献   
7.
Summary Glycophorin A, a major glycoprotein of the erythrocyte membrane, has been incorporated into small unilamellar vesicles composed of a variety of pure and mixed phospholipids. Nuclear spin labels including31P and19F have been used at natural abundance or have been synthetically incorporated in lipids to act as probes of lipid-protein interaction. Interactions produce broadening of resonances in several cases and it can be used to demonstrate preferential interaction of certain lipids with glycophorin.31P and19F probes show a strong preferential interaction of glycophorin with phosphatidylserine over phosphatidylcholine. There is some evidence that interactions are more pronounced at the inner surface of the bilayer and these results are rationalized in terms of the asymmetric distribution of protein and lipid.  相似文献   
8.
We have used N epsilon-dansyl-L-lysine as a fluorescent membrane probe, to study cells taken from tissues concerned with immune function. There is a striking similarity between the staining selectivity of this compound and that reported by others for merocyanine 540. Both compounds stain leukemic, human, peripheral leukocytes, an erythroleukemia line, and some mouse bone marrow cells, suggesting common selectivity for a membrane feature of hemopoietic cells. Both compounds fail to stain red blood cells, normal human leukocytes, mouse spleen and thymus cells. We have recently reported that dansyl-lysine apparently selects for cholesterol-free phospholipid domains in liposomes and now report similar selectivity for merocyanine 540 staining of liposomes.  相似文献   
9.
The structural organization of Tetrahymena pyriformis is such that its cilia are remote from the main centers of lipid metabolism. As a result, the ciliary membrane lipid composition of cells exposed to low-temperature stress is initially unaffected by the significant metabolic changes induced in microsomal membranes. Nevertheless, changes in the ciliary membrane lipid composition can be detected during the first 4 h of cold exposure. A combination of in vivo and in vitro experiments has provided strong evidence for a substantial retailoring of ciliary phospholipid molecular species in situ in the absence of any importation of lipids from the cell interior or change in overall ciliary fatty acid composition. The mechanism responsible for the ciliary lipid changes is independent of the one(s) triggering internal acclimation responses. Our observations establish for the first time that chilling stress can simultaneously induce separate and distinctive lipid modification responses in different parts of a cell. This finding could be important in identifying the molecular ‘sensor’ capable of actuating stress-induced lipid changes.  相似文献   
10.
Stimulation of rabbit neutrophils prelabeled with 32P by the synthetic chemotactic peptide f-Met-Leu-Phe induces a rapid decrease in the radioactivity in both phosphatidylinositol, 4,5 bis phosphate and phosphatidylinositol 4-monophosphate. The mean +/- standard error of the mean values of the maximum decrease in phosphatidylinositol, 4,5 bis phosphate occurred at 10 seconds following stimulation and is equal to 19 +/- 3% of the control value. The corresponding value for phosphatidylinositol 4-monophosphate occurred at 60 seconds following stimulation and is equal to 37 +/- 7% of the control value. On the other hand, the radioactivity in phosphatidic acid and lysophospholipids increased continuously with time following stimulation. The relationship of these changes to calcium release and neutrophil activation is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号