首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   30篇
  国内免费   5篇
  2023年   2篇
  2022年   5篇
  2021年   5篇
  2020年   6篇
  2019年   17篇
  2018年   6篇
  2017年   11篇
  2016年   12篇
  2015年   11篇
  2014年   12篇
  2013年   24篇
  2012年   10篇
  2011年   19篇
  2010年   18篇
  2009年   28篇
  2008年   19篇
  2007年   21篇
  2006年   14篇
  2005年   15篇
  2004年   13篇
  2003年   14篇
  2002年   9篇
  2001年   10篇
  2000年   10篇
  1999年   7篇
  1998年   7篇
  1997年   10篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1981年   1篇
排序方式: 共有355条查询结果,搜索用时 15 毫秒
1.
2.
Monogamy in black vultures: genetic evidence from DNA fingerprinting   总被引:3,自引:3,他引:0  
Recent research has indicated that avian mating systems maycommonly deviate from monogamy due to extrapair fertilizations(EPFs). Because the majority of avian species have long beenconsidered monogamous, accurate measurement of the frequencyof EPFs in a variety of species is important to enhance understandingof the evolution of avian mating systems. We used DNA fingerprintingto investigate the apparently monogamous mating system of blackvultures (Coragyps airaius) by assaying parentage within severalnuclear families. Monogamy is suggested in black vultures becausemated pairs exhibit long-term pair bonding and year-round association,and share incubation and nestling feeding duties equally. Thirtytwobreeders and 36 nestlings representing 16 complete nuclear familieswere tagged for individual identification and sampled for DNAanalysis using 2 restriction enzymes and 3 probes for hypervariableregions. Putative parents were assigned parentage in all cases.We empirically examined the probability of detecting EPFs bycomparing nestlings' fingerprints to those of a putative parentand another randomly chosen adult. All putative parents couldbe assigned with 95%confidence and all outside adults couldbe similarly excluded. There is therefore no evidence for successfulEPFs in this population, indicating a mating system that doesnot deviate from strict monogamy. The complex social behaviorof black vultures may eliminate the opportunity for EPFs dueto the prohibition of copulations in the presence of relatives.  相似文献   
3.
The main molecular techniques which can be used to generate genetic markers, and the applications of these markers to studies of fish populations are outlined. Published and ongoing studies, in the authors' laboratories, on brown trout and Atlantic salmon are used to compare the resolution and applicability of allozyme, mitochondrial DNA and minisatellite (variable number of tandem repeats) markers for studies on population structuring, genetic variation within populations, and the impact of the accidental and deliberate introduction of non-native salmonids on the genetic make-up of natural populations.  相似文献   
4.
The Greater Bilby has shown a rapid decline in range during this century and now occupies only a small isolated area in south-western Queensland (QLD) and a larger, but mostly low-density area in the north-western deserts of the Northern Territory (NT) and Western Australia (WA). We have examined variation in the control region of mitochondrial DNA (mtDNA) and at nine microsatellite loci in order to investigate the extent of current and historical subdivision across the species range, and to provide a preliminary assessment of genetic structuring and mating system on a finer scale within the QLD population. Both mtDNA and microsatellite loci had substantial variation within and among populations, with mtDNA divergence being greater between QLD and NT than between NT and WA. The QLD population had two unique and divergent mtDNA lineages, but there was no evidence for strong phylogeographical structure across the range. The available evidence suggests that the bilby should be considered as a single Evolutionarily Significant Unit consisting of multiple Management Units. Augmentation of the remnant QLD population from the NT does not appear necessary at this stage, at least not on genetic grounds. Finer-scale analysis of microsatellite variation for two QLD colonies revealed a deficiency of heterozygotes and significantly greater relatedness within than between colonies. However, structuring was observed only for males; relatedness values for females did not depart from those expected under panmixia. Parentage exclusion analysis for one colony allowed the construction of a partial pedigree which indicated strong polygyny, with one male fathering all but one of the eight offspring assigned. The extent to which fine-scale genetic structuring and differences between sexes is due to sex-biased dispersal vs. effects of mating system remain to be determined.  相似文献   
5.
Eight polymorphic microsatellite markers from the swallow were isolated and characterized. Extraordinary variability was revealed at the HrU6 locus with 45 different alleles scored among 46 unrelated individuals. The probability that the same genotype combination would occur in two random and unrelated individuals at six selected loci was as low as 1.3 × 10-8 and the combined exclusion probability was 0.9996. Stable Mendelian inheritance was observed in about 1000 meioses. No significant linkage was revealed and for almost all combinations of marker-pairs, linkage closer than 5 cM could be excluded. At two loci, null (nonamplifying) alleles were encountered. Thirteen (30%) extra-pair offspring were identified in 5 (56%) broods when applying the marker set on a nearly complete swallow colony. We were able to identify a single male from the other families in the colony as the most likely father for nine of the 13 extra-pair offspring.  相似文献   
6.
Bateman’s experimental study of Drosophila melanogaster produced conclusions that are now part of the bedrock premises of modern sexual selection. Today it is the most cited experimental study in sexual selection, and famous as the first experimental demonstration of sex differences in the relationship between number of mates and relative reproductive success. We repeated the experimental methodology of the original to evaluate its reliability. The results indicate that Bateman’s methodology of visible mutations to assign parentage and reproductive success to subject adults is significantly biased. When combined in offspring, the mutations decrease offspring survival, so that counts of mate number and reproductive success are mismeasured. Bateman’s method overestimates the number of subjects with no mates and underestimates the number with one or more mates for both sexes. Here we discuss why Bateman’s paper is important and present additional analyses of data from our monogamy trials. Monogamy trials can inform inferences about the force of sexual selection in populations because in monogamy trials male–male competition and female choice are absent. Monogamy trials also would have provided Bateman with an a priori test of the fit of his data to Mendel’s laws, an unstated, but vital assumption of his methodology for assigning parentage from which he inferred the number of mates per individual subject and their reproductive success. Even under enforced monogamous mating, offspring frequencies of double mutant, single mutant and no mutant offspring were significantly different from Mendelian expectations proving that Bateman’s method was inappropriate for answering the questions he posed. Double mutant offspring (those with a mutation from each parent) suffered significant inviability as did single mutant offspring whenever they inherited their mother’s marker but the wild-type allele at their father’s marker locus. These inviability effects produced two important inaccuracies in Bateman’s results and conclusions. (1) Some matings that actually occurred were invisible and (2) reproductive success of some mothers was under-estimated. Both observations show that Bateman’s conclusions about sex differences in number of mates and reproductive success were unwarranted, based on biased observations. We speculate about why Bateman’s classic study remained without replication for so long, and we discuss why repetition almost 60 years after the original is still timely, necessary and critical to the scientific enterprise. We highlight overlooked alternative hypotheses to urge that modern tests of Bateman’s conclusions go beyond confirmatory studies to test alternative hypotheses to explain the relationship between mate number and reproductive success.  相似文献   
7.
Parentage analysis in natural populations is a powerful tool for addressing a wide range of ecological and evolutionary questions. However, identifying parent–offspring pairs in samples collected from natural populations is often more challenging than simply resolving the Mendelian pattern of shared alleles. For example, large numbers of pairwise comparisons and limited numbers of genetic markers can contribute to incorrect assignments, whereby unrelated individuals are falsely identified as parent–offspring pairs. Determining which parentage methods are the least susceptible to making false assignments is an important challenge facing molecular ecologists. In a recent paper, Harrison et al. (2013a) address this challenge by comparing three commonly used parentage methods, including a Bayesian approach, in order to explore the effects of varied proportions of sampled parents on the accuracy of parentage assignments. Unfortunately, Harrison et al. made a simple error in using the Bayesian approach, which led them to incorrectly conclude that this method could not control the rate of false assignment. Here, I briefly outline the basic principles behind the Bayesian approach, identify the error made by Harrison et al., and provide detailed guidelines as to how the method should be correctly applied. Furthermore, using the exact data from Harrison et al., I show that the Bayesian approach actually provides greater control over the number of false assignments than either of the other tested methods. Lastly, I conclude with a brief introduction to solomon , a recently updated version of the Bayesian approach that can account for genotyping error, missing data and false matching.  相似文献   
8.
Dispersal and mating features strongly influence the evolutionary dynamics and the spatial genetic structure (SGS) of marine populations. For the first time in a marine invertebrate, we examined individual reproductive success, by conducting larval paternity assignments after a natural spawning event, combined with a small‐scale SGS analysis within a population of the gorgonian Paramuricea clavata. Thirty four percent of the larvae were sired by male colonies surrounding the brooding female colonies, revealing that the bulk of the mating was accomplished by males from outside the studied area. Male success increased with male height and decreased with increasing male to female distance. The parentage analyses, with a strong level of self‐recruitment (25%), unveiled the occurrence of a complex family structure at a small spatial scale, consistent with the limited larval dispersal of this species. However, no evidence of small scale SGS was revealed despite this family structure. Furthermore, temporal genetic structure was not observed, which appears to be related to the rather large effective population size. The low level of inbreeding found suggests a pattern of random mating in this species, which disagrees with expectations that limited larval dispersal should lead to biparental inbreeding. Surface brooding and investment in sexual reproduction in P. clavata contribute to multiple paternity (on average 6.4 fathers were assigned per brood), which enhance genetic diversity of the brood. Several factors may have contributed to the lack of biparental inbreeding in our study such as (i) the lack of sperm limitation at a small scale, (ii) multiple paternity, and (iii) the large effective population size. Thus, our results indicate that limited larval dispersal and complex family structure do not necessarily lead to biparental inbreeding and SGS. In the framework of conservation purposes, our results suggested that colony size, proximity among colonies and the population size should be taken into consideration for restoration projects.  相似文献   
9.
A simulation module is built into the software package colony to simulate marker genotype data of individuals with a predefined parentage and sibship structure. The simulated data can then be used to compare the accuracy, robustness and computational efficiency of different methods for sibship and parentage reconstruction, to examine the impact of different parameter options in a software on its accuracy and computational efficiency and to assess the information sufficiency of a given set of markers for a sibship and parentage analysis. This computer note describes the method used for simulating genotype data with a pedigree and its possible applications. The method can quickly generate genotype data for a one‐ or two‐generation pedigree of virtually any complexity with up to 30k offspring, at up to 30k codominant or dominant loci with an arbitrary degree of linkage and a user‐defined mistyping rate. The data can be fed directly into the colony program for analysis by three sibship and parentage reconstruction methods and can also be imported into other programs such as Excel and R. With slight modification, the data can be analysed by other relationship analysis software.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号