首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1167篇
  免费   61篇
  国内免费   15篇
  2024年   1篇
  2023年   56篇
  2022年   80篇
  2021年   60篇
  2020年   76篇
  2019年   67篇
  2018年   69篇
  2017年   53篇
  2016年   38篇
  2015年   37篇
  2014年   99篇
  2013年   137篇
  2012年   58篇
  2011年   63篇
  2010年   27篇
  2009年   47篇
  2008年   49篇
  2007年   46篇
  2006年   43篇
  2005年   30篇
  2004年   23篇
  2003年   19篇
  2002年   20篇
  2001年   13篇
  2000年   7篇
  1999年   5篇
  1998年   3篇
  1997年   4篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有1243条查询结果,搜索用时 15 毫秒
1.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
2.
3.
Thomas Nickles challenges my thesis that innovative discoveries can be based on deliberately chosen problems and research strategies. He suggests that all significant innovation can be seen as such only in retrospect and that its generation must be serendipitous. Here I argue in response that significant innovations can and do often arise from self conscious critical appraisal of orthodox practice combined with regulated though speculative abductive argumentation to alternative explanatory schemata. Orthodox practice is not based upon monolithic systems of belief about the subject of inquiry. Rather major domains of scientific practice often are approached from different conceptualizations that provide grounds for critical dialectic and consilient empirical information. Abductive arguments that meet appropriate conditions of likelihood, probability and analogy are an important means of justifying allocating resources to innovative practices that have yet to produce products that can rival those of established orthodoxy.  相似文献   
4.
Drug resistance is a critical obstacle to effective treatment in patients with chronic myeloid leukemia. To understand the underlying resistance mechanisms in response to imatinib mesylate (IMA) and adriamycin (ADR), the parental K562 cells were treated with low doses of IMA or ADR for 2 months to generate derivative cells with mild, intermediate, and severe resistance to the drugs as defined by their increasing resistance index. PulseDIA-based (DIA [data-independent acquisition]) quantitative proteomics was then employed to reveal the proteome changes in these resistant cells. In total, 7082 proteins from 98,232 peptides were identified and quantified from the dataset using four DIA software tools including OpenSWATH, Spectronaut, DIA-NN, and EncyclopeDIA. Sirtuin signaling pathway was found to be significantly enriched in both ADR-resistant and IMA-resistant K562 cells. In particular, isocitrate dehydrogenase (NADP(+)) 2 was identified as a potential drug target correlated with the drug resistance phenotype, and its inhibition by the antagonist AGI-6780 reversed the acquired resistance in K562 cells to either ADR or IMA. Together, our study has implicated isocitrate dehydrogenase (NADP(+)) 2 as a potential target that can be therapeutically leveraged to alleviate the drug resistance in K562 cells when treated with IMA and ADR.  相似文献   
5.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   
6.
7.
8.
杨友桃  唐迎秋 《蛛形学报》1995,4(2):142-143
报道采自甘肃文县的东方法老蛛雌蛛,为该种雌蛛的首次记述。  相似文献   
9.
Poly(ADP-ribose): Historical perspective   总被引:2,自引:0,他引:2  
  相似文献   
10.
Metal-based anticancer agents occupy a distinct chemical space due to their particular coordination geometry and reactivity. Despite the initial DNA-targeting paradigm for this class of compounds, it is now clear that they can also be tuned to target proteins in cells, depending on the metal and ligand scaffold. Since metallodrug discovery is dominated by phenotypic screenings, tailored proteomics strategies were crucial to identify and validate protein targets of several investigative and clinically advanced metal-based drugs. Here, such experimental approaches are discussed, which showed that metallodrugs based on ruthenium, gold, rhenium and even platinum, can selectively and specifically target proteins with clear-cut down-stream effects. Target identification strategies are expected to support significantly the mechanism-driven clinical translation of metal-based drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号