首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   600篇
  免费   10篇
  国内免费   4篇
  2023年   8篇
  2022年   13篇
  2021年   4篇
  2020年   5篇
  2019年   6篇
  2018年   19篇
  2017年   7篇
  2016年   4篇
  2015年   8篇
  2014年   50篇
  2013年   47篇
  2012年   11篇
  2011年   22篇
  2010年   39篇
  2009年   42篇
  2008年   23篇
  2007年   19篇
  2006年   25篇
  2005年   27篇
  2004年   10篇
  2003年   9篇
  2002年   3篇
  2001年   7篇
  2000年   4篇
  1999年   7篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1989年   2篇
  1987年   2篇
  1986年   5篇
  1985年   8篇
  1984年   25篇
  1983年   23篇
  1982年   34篇
  1981年   18篇
  1980年   18篇
  1979年   15篇
  1978年   4篇
  1977年   5篇
  1976年   5篇
  1975年   5篇
  1974年   3篇
  1973年   2篇
排序方式: 共有614条查询结果,搜索用时 46 毫秒
1.
Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12–Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12–Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113–131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64–99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.  相似文献   
2.
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.  相似文献   
3.
Despite similarities of cellular membranes in all eukaryotes, every compartment displays characteristic and often unique features which are important for the functions of the specific organelles. In the present study, we biochemically characterized the plasma membrane of the methylotrophic yeast Pichia pastoris with emphasis on the lipids which form the matrix of this compartment. Prerequisite for this effort was the design of a standardized and reliable isolation protocol of the plasma membrane at high purity. Analysis of isolated plasma membrane samples from P. pastoris revealed an increase of phosphatidylserine and a decrease of phosphatidylcholine compared to bulk membranes. The amount of saturated fatty acids in the plasma membrane was higher than in total cell extracts. Ergosterol, the final product of the yeast sterol biosynthetic pathway, was found to be enriched in plasma membrane fractions, although markedly lower than in Saccharomyces cerevisiae. A further characteristic feature of the plasma membrane from P. pastoris was the enrichment of inositol phosphorylceramides over neutral sphingolipids, which accumulated in internal membranes. The detailed analysis of the P. pastoris plasma membrane is discussed in the light of cell biological features of this microorganism especially as a microbial cell factory for heterologous protein production.  相似文献   
4.
Summary The compartmentation of the phosphatidylethanolamine newly synthesized in brain microsomesin vitro either by base exchange or net synthesis has been studied, using difluorodinitrobenzene as a chemical probe. The experimental results demonstrate that in rat brain microsomes the phosphatidylethanolamine molecules synthesized by base exchange and the bulk membrane lipid belong to different pools. Ca2+ bound to microsomes seems to be involved in the maintenance of the compartmentation of phosphatidylethanolamine. In the presence of Ca2+ the newly synthesized phosphatidylethanolamine molecules react with difluorodinitrobenzene as though they are organized in clusters. After biosynthesisin vivo orin vitro through the cytidine pathway, the compartmentation of the newly formed phosphatidylethanolamine appears less marked than after the synthesis through base exchange.  相似文献   
5.
Summary Glycophorin A, a major glycoprotein of the erythrocyte membrane, has been incorporated into small unilamellar vesicles composed of a variety of pure and mixed phospholipids. Nuclear spin labels including31P and19F have been used at natural abundance or have been synthetically incorporated in lipids to act as probes of lipid-protein interaction. Interactions produce broadening of resonances in several cases and it can be used to demonstrate preferential interaction of certain lipids with glycophorin.31P and19F probes show a strong preferential interaction of glycophorin with phosphatidylserine over phosphatidylcholine. There is some evidence that interactions are more pronounced at the inner surface of the bilayer and these results are rationalized in terms of the asymmetric distribution of protein and lipid.  相似文献   
6.
Abstract The increased content of negatively-charged phospholipids in membranes of Vibrio costicola grown at high salinities is mediated by increased phospholipid synthesis of phosphatidylglycerol relative to phosphatidylethanolamine. This phenomenon provides a system for investigating the factors involved in triggering and controlling haloadaptation in this moderately halophilic bacterium. We review recent experiments, which show that when subjected to sudden increases in external salinity, V. costicola senses both the absolute NaCl concentration and the magnitude of the salt shift. We show that the latter is sensed at least in part via osmotic pressure effects, since shift-up into sucrose-containing media triggers comparable changes in growth and in phospholipid composition and synthesis.  相似文献   
7.
Stimulation of rabbit neutrophils prelabeled with 32P by the synthetic chemotactic peptide f-Met-Leu-Phe induces a rapid decrease in the radioactivity in both phosphatidylinositol, 4,5 bis phosphate and phosphatidylinositol 4-monophosphate. The mean +/- standard error of the mean values of the maximum decrease in phosphatidylinositol, 4,5 bis phosphate occurred at 10 seconds following stimulation and is equal to 19 +/- 3% of the control value. The corresponding value for phosphatidylinositol 4-monophosphate occurred at 60 seconds following stimulation and is equal to 37 +/- 7% of the control value. On the other hand, the radioactivity in phosphatidic acid and lysophospholipids increased continuously with time following stimulation. The relationship of these changes to calcium release and neutrophil activation is discussed.  相似文献   
8.
The association of fatty acids, androstane, phosphatidylcholine, phosphatidylethanolamine, and phosphatidic acid with purified and phospholipid-vesicle reconstituted cytochrome P-450 was studied by spin labeling. Spin-labeled fatty acids were found to be motionally restricted by cytochrome P-450 in both phospholipid vesicles and in microsomes to a much greater extent than spin-labeled phospholipids. The equilibrium of spin-labeled fatty acid between the bulk membrane lipid and the protein interface could be shifted towards an increased amount in the bulk phospholipid phase by the addition of oleic acid or lysophosphatidylcholine, but not by sodium cholate. Microsomes from different animals showed a variable extent of motional restriction of fatty acids, independent of pretreatment of the animals with phenobarbital or β-naphthoflavone, of cytochrome P-450 content, of the presence of type I and type II substrates for cytochrome P-450. These differences are attributed to the presence of varying amounts of lipid breakdown products in the microsomal membrane such as lysolipids or fatty acids which compete with the externally added spin-labeled fatty acids, or with spin-labeled androstane for the binding to cytochrome P-450. The negative charge of the fatty acid was found to be involved in its association with the protein. Cytochrome P-450 was shown to interact only with a few spin-labeled phospholipid molecules in such a way that the motional restriction of the spin acyl chains can be detected by electron paramagnetic resonance (τR > 10?8s). The number of associated lipid molecules per protein probably is too small to form a complete shell around the protein. This lipid-protein interaction could be destroyed by the addition of sodium cholate, in contrast to the fatty acid-protein interaction.  相似文献   
9.
The fatty acid composition of constituent phospholipids and the cholesterol content of rat liver plasma membranes were determined subsequent to maternal alcohol ingestion during pregnancy and lactation. The alcoholic group was given a liquid Metrecal diet containing 37% ethanol-derived calories. The control group was pair-fed an isocaloric sucrose/Metrecal diet. Litters were killed for lipid analyses at days 5, 15 and 25 after birth. These studies revealed that the total phospholipid phosphorus was similar and increased significantly with age in both groups. Cholesterol also increased significantly with age in both groups but was greater in the alcoholic pups, resulting in a higher cholesterol/phospholipid molar ratio. While the phosphatidylethanolamine (PE) content increased with age in both groups, that of sphingomyelin decreased. Phosphatidylserine + phosphatidylinositol (PS + PI) was significantly higher in the control group at all ages studied. A consistent increase of C22:6 in phosphatidylcholine (PC), sphingomyelin, PS + PI and in the total phospholipid fraction from alcoholic pups was observed. Although other fatty acid changes were found in PC, PS + PI and sphingomyelin, PE was not affected. These results suggest that specific adaptive changes were induced in the liver plasma membrane lipids of the progeny from alcoholic rats.  相似文献   
10.
The regulation of human platelet responses by cyclic AMP (cAMP) has been investigated by measuring thrombin-stimulated serotonin release, Ca2+ uptake and phospholipase activity. Thrombin-induced 1,2-diacylglycerol (DG) formation as a result of phospholipase C activation was inhibited by pretreatment with dibutyryl cAMP (dbcAMP) in a dose-dependent manner. Subsequent failure to produce phosphatidic acid (PA), which is converted from 1,2-DG by phosphorylation and would serve as intracellular Ca2+ ionophore, appeared to parallel the decrease in Ca2+ uptake activity. Phospholipase A2 activity, monitored by the production of [3H]lysophosphatidylcholine and [3H]lysophosphatidylethanolamine, was also suppressed by dbcAMP. These data indicate that the intracellular cAMP level may be closely associated with Ca2+ uptake and phospholipases activation. In addition, it is suggested that alteration of intracellular cAMP regulates phospholipase activation and consequently platelet responses, perhaps by controlling available Ca2+ content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号