首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
  20篇
  2019年   1篇
  2018年   2篇
  2014年   1篇
  2013年   1篇
  2009年   1篇
  2008年   2篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  1998年   1篇
  1993年   1篇
  1991年   1篇
  1978年   1篇
排序方式: 共有20条查询结果,搜索用时 0 毫秒
1.
The reversible inhibition of respiratory activity could provide a novel approach to the preservation of traditionally hard to store plant germplasm such as clonal materials and recalcitrant seed. The gaseous anesthetic nitrous oxide caused a reversible, dose-dependent, partial inhibition of dioxygen utilization in mitochondrial particles isolated from cell suspension cultures of the salt-tolerant marsh grass Distichlis spicata, with maximal inhibition of 33% after 30 minutes exposure to an atmosphere of 80% nitrous oxide plus 20% oxygen. Respiration of whole cells required longer time to be affected by the anesthetic, and was reversibly inhibited an average of 19% when measured using a differential respirometer. Exposure to 80% nitrous oxide plus 20% oxygen for up to 10 days caused no measurable effect on cell growth.Abbreviations PCV packed cell volume - EDTA sodium ethylenediaminetetraacetic acid - BSA bovine serum albumin - MOPS 3(N-morpholino) propanesulfonic acid - TMPD N,N,N',N'-tetramethyl-p-phenylene diamine - STP standard temperature and pressure  相似文献   
2.
《Luminescence》2003,18(1):49-57
The chemiluminescence reaction of lucigenin (Luc2+?2NO3?, N,N′‐dimethyl‐9,9′‐biacridinium dinitrate) at gold electrodes in dioxygen‐saturated alkaline aqueous solutions (pH 10) was investigated in detail by the use of electrochemical emission spectroscopy. We noted that both O2 and Luc2+ are reduced on a gold electrode in aqueous solution of pH 10 in almost the same potential region. From this fact, we expected chemiluminescence based on a radical–radical coupling reaction of superoxide ion (O2·?) and one‐electron reduced form of Luc2+ (Luc·+, a radical cation). Chemiluminescence was actually observed in the potential range where O2 and Luc2+ were simultaneously reduced at the electrodes. The effects were examined upon addition of enzymes, i.e. superoxide dismutase (SOD) and catalase, into the solution and the substitution of heavy water (D2O) for light water (H2O) as a solvent on the chemiluminescence. In the presence of native and active SOD, chemiluminescence was completely absent. On the other hand, chemiluminescence was observed, unchanged in the presence of either denatured and inert SOD or catalase. In addition, the amount of chemiluminescence in D2O solution was about three times greater than that in H2O solution. These results, together with cyclic voltammetric results, suggest that O2·? participates directly in the chemiluminescence but H2O2 does not, and the chemiluminescence results from the coupling reaction between O2·? and Luc·+ under the present experimental conditions. These chemically unstable species, O2·? and Luc·+, are produced during the simultaneous electroreduction of O2 and Luc2+. The coupling reaction between those radical species would lead to the formation of a dioxetane‐type intermediate and, finally, to chemiluminescence. The chemiluminescence reaction mechanism is discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
3.
Assays of peroxy compounds are commonly performed after chromatographic separation of analysed mixtures. In high‐performance liquid chromatography (HPLC), solvent reservoirs are sparged by helium or inline vacuum‐degassed in order to control the compressibility of the solvents for efficient pumping. In this study, we investigated the influence of degassing the reaction solution on the light output of the hemin‐catalyzed luminol oxidation by various oxidants. We found that, when t‐butyl hydroperoxide, hydrogen peroxide, n‐butyl hydroperoxide, iodosobenzene and iodobenzene diacetate were used as oxidants, the luminol chemiluminescence was lowered by 50–70% compared with an equilibrated and degassed solution. The opposite effect was observed when dibenzoyl peroxide and 3‐chloroperoxybenzoic acid were used as oxidants, as the chemiluminescence increased by approximately 20–30%. The reduced chemiluminescence was explained based on the known role of dioxygen in luminol chemiluminescence. The enhancement of chemiluminescence was rationalized by suggesting an alternative mechanism of luminol oxidation valid for peroxyacids and diacyl peroxides in which the reaction of a peroxyacid anion with the diazaquinone led to light emission with a higher quantum yield than the usual path, which is suppressed by the removal of dioxygen from the reaction solution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
4.
In this work, molecular dynamics (MD) simulations of the permeation of proteins by small gases of biological significance have been extended from gas carrier, sensor, and enzymatic proteins to genetically encoded tags and killer proteins. To this end, miniSOG was taken as an example of current high interest, using a biased form of MD, called random‐acceleration MD. Various egress gates and binding pockets for dioxygen, as an indistinguishable mimic of singlet dioxygen, were found on both above and below the isoalloxazine plane of the flavin mononucleotide cofactor in miniSOG. Of such gates and binding pockets, those lying within two opposite cones, coaxial with a line normal to the isoalloxazine plane, and with the vertex at the center of such a plane are those most visited by the escaping gas molecule. Out of residues most capable of quenching 1O2, Y30, lying near the base of one such a cone, and H85, near the base of the opposite cone, are held to be most responsible for the reduced quantum yield of 1O2 with folded miniSOG with respect to free flavin mononucleotide in solution.  相似文献   
5.

Background

The nuclear genome of Chlamydomonas reinhardtii encodes a dozen hemoglobins of the truncated lineage. Four of these, named THB1–4, contain a single ~130-residue globin unit. THB1, which is cytoplasmic and capable of nitric oxide dioxygenation activity, uses a histidine and a lysine as axial ligands to the heme iron. In the present report, we compared THB2, THB3, and THB4 to THB1 to gain structural and functional insights into algal globins.

Methods

We inspected properties of the globin domains prepared by recombinant means through site-directed mutagenesis, electronic absorption, CD, and NMR spectroscopies, and X-ray crystallography.

Results

Recombinant THB3, which lacks the proximal histidine but has a distal histidine, binds heme weakly. NMR data demonstrate that the recombinant domains of THB2 and THB4 coordinate the ferrous heme iron with the proximal histidine and a lysine from the distal helix. An X-ray structure of ferric THB4 confirms lysine coordination. THB1, THB2, and THB4 have reduction potentials between ?65 and ?100 mV, are capable of nitric oxide dioxygenation, are reduced at different rates by the diaphorase domain of C. reinhardtii nitrate reductase, and show different response to peroxide treatment.

Conclusions

Three single-domain C. reinhardtii hemoglobins use lysine as a distal heme ligand in both Fe(III) and Fe(II) oxidation states. This common feature is likely related to enzymatic activity in the management of reactive oxygen species.

General significance

Primary structure analysis of hemoglobins has limited power in the prediction of heme ligation. Experimental determination reveals variations in this essential property across the superfamily.  相似文献   
6.
It is shown that hypochlorous acid preferentially oxidizes 2,5-dimethylfuran, histidine, β-carotene and 1,4-diazabicyclo[2.2.2]octane in the presence of hydrogen peroxide without intermediary formation of singlet-excited molecular oxygen. It is therefore highly unlikely that the protective action of these compounds towards myeloperoxidase-catalyzed chlorination reactions is due to singlet oxygen deactivation or removal, and putative evidence based upon these effects for singlet oxygen participation in bactericidal reactions of myeloperoxidase-containing leukocytes is equivocal.  相似文献   
7.
Ueki Y  Inoue M  Kurose S  Kataoka K  Sakurai T 《FEBS letters》2006,580(17):4069-4072
Asp112 adjacent to the trinuclear Cu center of a multicopper oxidase, CueO was mutated for Glu, Ala and Asn. Mutations on Asp112 affected not only spectroscopic and magnetic properties derived from the trinuclear Cu center but also enzyme activities. The uncoordinated Asp112 was found to play multiple roles to promote the binding of dioxygen at the trinuclear Cu center and to accelerate the conversion of dioxygen to water molecules by facilitating the supply of H+ to the reaction intermediates.  相似文献   
8.
Molecular dynamics simulations performed on quercetin 2,3-dioxygenase have shown the existence of a channel linking the bulk solvent and the cavity of the enzyme. Although much is known about the the oxygenolysis reaction catalyzed by this enzyme, the way dioxygen enters the active site has not been firmly established. The size, orientation and hydrophobic character of this channel suggests that it could provide an entrance for molecular dioxygen into the cavity. Free energy calculations show that such a process is likely to occur.  相似文献   
9.
A one-step procedure of immobilizing soluble and aggregated preparations of D-amino acid oxidase from Trigonopsis variabilis (TvDAO) is reported where carrier-free enzyme was entrapped in semipermeable microcapsules produced from the polycation poly(methylene-co-guanidine) in combination with CaCl2 and the polyanions alginate and cellulose sulfate. The yield of immobilization, expressed as the fraction of original activity present in microcapsules, was approximately 52 +/- 5%. The effectiveness of the entrapped oxidase for O2-dependent conversion of D-methionine at 25 degrees C was 85 +/- 10% of the free enzyme preparation. Because continuous spectrophotometric assays are generally not well compatible with insoluble enzymes, we employed a dynamic method for the rapid in situ estimation of activity and relatedly, stability of free and encapsulated oxidases using on-line measurements of the concentration of dissolved O2. Integral and differential modes of data acquisition were utilized to examine cases of fast and slow inactivation of the enzyme, respectively. With a half-life of 60 h, encapsulated TvDAO was approximately 720-fold more stable than the free enzyme under conditions of bubble aeration at 25 degrees C. The soluble oxidase was stabilized by added FAD only at temperatures of 35 degrees C or greater.  相似文献   
10.
The reaction of dioxygen with the copper(I) complex of the tridentate ligand 1,1,4,7,7-pentamethyldiethylenetriamine (Me5dien) has been investigated using low-temperature stopped-flow techniques. The formation of a bis(μ-oxo)copper(III) complex as a reactive intermediate could be detected spectroscopically at low temperatures and a quantitative kinetic analysis was performed for this system. Crystal structures of the copper(II) complexes [(Me-bpa)Cu(Cl)2] (1), [{(Me-bpa)Cu(Cl)(ClO4)}2] (2), [{(MeL)Cu(Cl)(ClO4)}2] (3), and [(MeL)Cu(NCS)2] (4) (Me-bpa = N-methyl-[bis(2-pyridyl)methyl]amine; MeL = N-methyl-[(2-pyridyl)ethyl(2-pyridyl)methyl]amine) are reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号