首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   570篇
  免费   63篇
  国内免费   34篇
  667篇
  2025年   1篇
  2024年   13篇
  2023年   14篇
  2022年   14篇
  2021年   20篇
  2020年   31篇
  2019年   32篇
  2018年   30篇
  2017年   22篇
  2016年   22篇
  2015年   24篇
  2014年   32篇
  2013年   36篇
  2012年   27篇
  2011年   25篇
  2010年   33篇
  2009年   30篇
  2008年   35篇
  2007年   31篇
  2006年   30篇
  2005年   24篇
  2004年   11篇
  2003年   16篇
  2002年   17篇
  2001年   6篇
  2000年   10篇
  1999年   10篇
  1998年   6篇
  1997年   8篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有667条查询结果,搜索用时 15 毫秒
1.
Many ecological studies rely heavily on chemical analysis of plant and animal tissues. Often, there is limited time and money to perform all the required analyses and this can result in less than ideal sampling schemes and poor levels of replication. Near infrared reflectance spectroscopy (NIRS) can relieve these constraints because it can provide quick, non-destructive and quantitative analyses of an enormous range of organic constituents of plant and animal tissues. Near infrared spectra depend on the number and type of CH, NH and OH bonds in the material being analyzed. The spectral features are then combined with reliable compositional or functional analyses of the material in a predictive statistical model. This model is then used to predict the composition of new or unknown samples. NIRS can be used to analyze some specific elements (indirectly – e.g., N as protein) or well-defined compounds (e.g., starch) or more complex, poorly defined attributes of substances (e.g., fiber, animal food intake) have also been successfully modeled with NIRS technology. The accuracy and precision of the reference values for the calibration data set in part determines the quality of the predictions made by NIRS. However, NIRS analyses are often more precise than standard laboratory assays. The use of NIRS is not restricted to the simple determination of quantities of known compounds, but can also be used to discriminate between complex mixtures and to identify important compounds affecting attributes of interest. Near infrared reflectance spectroscopy is widely accepted for compositional and functional analyses in agriculture and manufacturing but its utility has not yet been recognized by the majority of ecologists conducting similar analyses. This paper aims to stimulate interest in NIRS and to illustrate some of the enormous variety of uses to which it can be put. We emphasize that care must be taken in the calibration stage to prevent propagation of poor analytical work through NIRS, but, used properly, NIRS offers ecologists enormous analytical power. Received: 10 October 1997 / Accepted: 12 May 1998  相似文献   
2.
3.
Marcin Górecki 《Chirality》2015,27(7):441-448
Recent advances in equipment enabled the collection of solid‐state electronic circular dichroism (ECD) spectra using the commercially available integrating sphere attachment for a regular ECD spectrometer. This accessory was designed to reduce negative factors occurring in solid‐state ECD measurements, and is, thereby, very useful for recording diffuse transmittance CD (DTCD) spectra using the pellet technique. In the present article, the operating principle of the integrating sphere and utility of the DTCD method in recording solid‐state ECD spectra is demonstrated. Based on illustrative examples, i.e., 10‐camphorsulfonic acid ammonium, cholest‐4‐en‐3‐one, (3R,4R,5S)‐oseltamivir, and (S)‐linezolid, ECD solid‐state measurements were performed by means of both transmission and diffusion methods and later compared. Selection of these compounds as models for comparative studies was made in view of their different chromophoric systems and the profound importance in the pharmaceutical industry. During the course of this work the benefits and limitations of the use of integrating sphere are presented. The final conclusion is that more relevant solid‐state spectra can be obtained by means of the DTCD method. Chirality 27:441–448, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
4.
    
After years of qualitative and subjective study, quantitative colour science is now enabling rapid measurement, analysis and comparison of colour traits. However, it has not been determined how many replicates one needs to accurately quantify a species' colours for studies aimed at broad cross‐species trait comparison. We address this major methodological knowledge gap. We first quantified and assessed the variance in colour within and between species. Reflectance spectra of flowers from ten plant species and plumage of 20 bird species were measured using a spectrometer, and reflectance (i.e. brightness) and tetrahedral colour‐space coordinates were calculated. analysis of variance (ANOVA) analyses indicate that there is far more variation in the colours of birds and flowers between species (> 77%) than within species. A Mean Absolute Deviation from the Mean test was applied to indicate the sampling replication required for each species. Tetrahedral coordinates were sampled precisely with only one individual per species. Greater replication was needed to sample reflectance with the desired precision, particularly for darker coloured species. Our findings will allow researchers to allocate their sampling effort in a way that maximises the precision of their colour data collection. The fact that only a few replicates per species are necessary will greatly facilitate broad cross‐species comparisons of colour in the future. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114 , 69–81.  相似文献   
5.
6.
    
Plant–insect interactions are ubiquitous, and have been studied intensely because of their relevance to damage and pollination in agricultural plants, and to the ecology and evolution of biodiversity. Variation within species can affect the outcome of these interactions. Specific genes and chemicals that mediate these interactions have been identified, but genome‐ or metabolome‐scale studies might be necessary to better understand the ecological and evolutionary consequences of intraspecific variation for plant–insect interactions. Here, we present such a study. Specifically, we assess the consequences of genome‐wide genetic variation in the model plant Medicago truncatula for Lycaeides melissa caterpillar growth and survival (larval performance). Using a rearing experiment and a whole‐genome SNP data set (>5 million SNPs), we found that polygenic variation in M. truncatula explains 9%–41% of the observed variation in caterpillar growth and survival. Genetic correlations among caterpillar performance and other plant traits, including structural defences and some anonymous chemical features, suggest that multiple M. truncatula alleles have pleiotropic effects on plant traits and caterpillar performance (or that substantial linkage disequilibrium exists among distinct loci affecting subsets of these traits). A moderate proportion of the genetic effect of M. truncatula alleles on L. melissa performance can be explained by the effect of these alleles on the plant traits we measured, especially leaf toughness. Taken together, our results show that intraspecific genetic variation in M. truncatula has a substantial effect on the successful development of L. melissa caterpillars (i.e., on a plant–insect interaction), and further point toward traits potentially mediating this genetic effect.  相似文献   
7.
《激光生物学报》2000,9(1):68-74
激光热疗中,激光与生物组织相互作用研究主要包含两方面:光子在生物组织中的迁移规律,以及光生扫热在生物组织在的传导。对前者的描述主要为,基于传输理论的解析法和Monte ̄Carlo模拟,生物组织中光子迁移规律的研究能定量描述组织中的光分布,并进一步获得生物组织中的热分布;考虑到了生物组织特性,所建立了生物组织中温度场分布及变化规律。光子迁移与生物传热理论是研究激光热序不可分割的传热模型,全面描述了生  相似文献   
8.
    
Determination of sun protection factors (SPFs) is currently an invasive method, which is based on erythema formation (phototest). Here we describe an optical setup and measurement methodology for the determination of SPFs based on diffuse reflectance spectroscopy, which measures UV‐reflectance spectra at 4 distances from the point of illumination. Due to a high spatial variation of the reflectance data, most likely due to inhomogeneities of the sunscreen distribution, data of 50 measurement positions are averaged. A dependence of the measured SPF on detection distance is significant for 3 sunscreens, while being inconclusive for 2 sunscreens due to high inter‐sample variations. Using pig ear skin samples (n=6), the obtained SPF of 5 different commercial sunscreens corresponds to the SPF values of certified test institutes in 3 cases and is lower for 2 sunscreens of the same manufacturer, suggesting a formulation specific reason for the discrepancy. The results demonstrate that the measurement can be performed with a UV dose below the minimal erythema dose. We conclude the method may be considered as a potential noninvasive in vivo alternative to the invasive in vivo phototest, but further tests on different sunscreen formulations are still necessary.

  相似文献   

9.
    
A spatially resolved multimodal spectroscopic device was used on a two-layered “hybrid” model made of ex vivo skin and fluorescent gel to investigate the effect of skin optical clearing on the depth sensitivity of optical spectroscopy. Time kinetics of fluorescence and diffuse reflectance spectra were acquired in four experimental conditions: with optical clearing agent (OCA) 1 made of polyethylene glycol 400 (PEG-400), propylene glycol and sucrose; with OCA 2 made of PEG-400 and dimethyl sulfoxide (DMSO); with saline solution as control and a “dry” condition. An increase in the gel fluorescence back reflected intensity was measured after optical clearing. Effect of OCA 2 turned out to be stronger than that of OCA 1, possibly due to DMSO impact on the stratum corneum keratin conformation. Complementary experimental results showed increased light transmittance through the skin and confirmed that the improvement in the depth sensitivity of the multimodal spectroscopic approach is related not only to the dehydration and refractive indices matching due to optical clearing, but also to the mechanical compression of tissues caused by the application of the spectroscopic probe.  相似文献   
10.
    
Diffuse reflectance spectroscopy (DRS) is a noninvasive, fast, and low‐cost technology with potential to assist cancer diagnosis. The goal of this study was to test the capability of our physiological model, a computational Monte Carlo lookup table inverse model, for nonmelanoma skin cancer diagnosis. We applied this model on a clinical DRS dataset to extract scattering parameters, blood volume fraction, oxygen saturation and vessel radius. We found that the model was able to capture physiological information relevant to skin cancer. We used the extracted parameters to classify (basal cell carcinoma [BCC], squamous cell carcinoma [SCC]) vs actinic keratosis (AK) and (BCC, SCC, AK) vs normal. The area under the receiver operating characteristic curve achieved by the classifiers trained on the parameters extracted using the physiological model is comparable to that of classifiers trained on features extracted via Principal Component Analysis. Our findings suggest that DRS can reveal physiologic characteristics of skin and this physiologic model offers greater flexibility for diagnosing skin cancer than a pure statistical analysis. Physiological parameters extracted from diffuse reflectance spectra data for nonmelanoma skin cancer diagnosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号