首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6110篇
  免费   691篇
  国内免费   487篇
  2024年   10篇
  2023年   84篇
  2022年   99篇
  2021年   163篇
  2020年   185篇
  2019年   254篇
  2018年   206篇
  2017年   205篇
  2016年   263篇
  2015年   234篇
  2014年   291篇
  2013年   321篇
  2012年   233篇
  2011年   325篇
  2010年   239篇
  2009年   399篇
  2008年   359篇
  2007年   407篇
  2006年   333篇
  2005年   316篇
  2004年   267篇
  2003年   260篇
  2002年   211篇
  2001年   179篇
  2000年   159篇
  1999年   149篇
  1998年   150篇
  1997年   112篇
  1996年   123篇
  1995年   92篇
  1994年   73篇
  1993年   64篇
  1992年   62篇
  1991年   60篇
  1990年   43篇
  1989年   34篇
  1988年   37篇
  1987年   35篇
  1986年   28篇
  1985年   32篇
  1984年   34篇
  1983年   29篇
  1982年   16篇
  1981年   23篇
  1980年   26篇
  1979年   18篇
  1978年   12篇
  1977年   8篇
  1975年   7篇
  1973年   6篇
排序方式: 共有7288条查询结果,搜索用时 631 毫秒
1.
Sex ratio theory has proved remarkably useful in testing theadaptive nature of animal behavior. A particularly productivearea in this respect is Hamilton's theory of local mate competition(LMC), which has been extended in numerous directions to includegreater biological realism, allowing more detailed tests inspecific organisms. We have presented one such extension, termedasymmetrical LMC, which occurs when egg laying by females ona patch is asynchronous, and emerging males do not disperse,resulting in the extent of LMC on a patch varying over time.Our aim here is to test whether the parasitoid wasp Nasoniavitripennis responds to variation in the degree of asymmetricalLMC. Specifically, we show that females adjust their offspringsex ratios in response to (1) variation in the amount of asynchronyin emergence between broods on a patch and (2) the number andproportion of previously parasitized hosts on the patch. Ourresults provide qualitative support for the predictions of theory,suggesting new levels of complexity in the sex ratio behaviorof this much-studied organism. However, our results do not alwaysprovide quantitative support for theory, suggesting furthercomplexities that must be clarified.  相似文献   
2.
3.
To investigate the potential for and constraints on the evolution of compensatory ability, we performed a greenhouse experiment using Asclepias syriaca in which foliar damage and soil nutrient concentration were manipulated. Under low nutrient conditions, significant genetic variation was detected for allocation patterns and for compensatory ability. Furthermore, resource allocation to storage was positively, genetically correlated both with compensatory ability and biomass when damaged, the last two being positively, genetically correlated with each other. Thus, in the low nutrient environment, compensatory ability via resource allocation to storage provided greater biomass when damaged. A negative genetic correlation between compensatory ability and plant biomass when undamaged suggests that this mechanism entailed an allocation cost, which would constrain the evolution of greater compensatory ability when nutrients are limited. Under high nutrient conditions, neither compensatory ability nor allocation patterns predicted biomass when damaged, even though genetic variation in compensatory ability existed. Instead, plant biomass when undamaged predicted biomass when damaged. The differences in outcomes between the two nutrient treatments highlight the importance of considering the possible range of environmental conditions that a genotype may experience. Furthermore, traits that conferred compensatory ability did not necessarily contribute to biomass when damaged, demonstrating that it is critical to examine both compensatory ability and biomass when damaged to determine whether selection by herbivores can favor the evolution of increased compensation. Received: 2 April 1999 / Accepted: 21 September 1999  相似文献   
4.
Ice crystal formation temperature was determined in the region of the crown in one group of 7-day-old intact unhardened high-salt plants of winter wheat (Triticum aestivum L. cv. Weibulls Starke II) with TA (Thermal Analysis) and DTA (Differential Thermal Analysis) methods. After exposure of another group of plants, grown for the first 7 days in the same way as the first group, to various sub-zero temperatures (-1 to 5°C), influx in roots of Rb+(86Rb+) and Ca2+(45Ca2+) and contents of K+ and Ca2+ were determined at intervals during 7 days of recovery. Ice crystal formation in the crown tissue was probably extracellular and took place at about -4°C. There was a large loss of K+ from the roots after treatment at sub-zero temperatures. This loss increased as the temperature of the sub-zero treatment decreased. During recovery, roots of plants exposed to -1, -2 and -3°C gradually reabsorbed K+. Reabsorption of K+ in roots of plants exposed to -4°C was greatly impaired. Rb+ influx decreased and Ca2+ influx increased after sub-zero temperature treatments of the plants. Active Rb+ influx mechanisms and active extrusion of Ca2+ were impaired or irreversibly damaged by the exposure. While Rb+ influx mechanisms were apparently repaired during recovery in plants exposed to temperatures down to -3°C, Ca2+ extrusion mechanisms were not. The temperature for ice crystal formation in the region of the crown tissue coincides with the temperature at which the plants lost the ability to reabsorb K+ and to repair Rb+ influx mechanisms during the recovery period. Plants were lethally damaged at temperatures below ?4°C.  相似文献   
5.
6.
The use of fossil fuel is predicted to cause an increase of the atmospheric CO2 concentration, which will affect the global pattern of temperature and precipitation. It is therefore essential to incorporate effects of temperature and water supply on carbon partitioning of plants to predict effects of elevated [CO2] on growth and yield of Triticum aestivum. Although earlier papers have emphasized that elevated [CO2] favours investment of biomass in roots relative to that in leaves, it has now become clear that these are indirect effects, due to the more rapid depletion of nutrients in the root environment as a consequence of enhanced growth. Broadly generalized, the effect of temperature on biomass allocation in the vegetative stage is that the relative investment of biomass in roots is lowest at a certain optimum temperature and increases at both higher and lower temperatures. This is found not only when the temperature of the entire plant is varied, but also when only root temperature is changed whilst shoot temperature is kept constant. Effects of temperature on the allocation pattern can be explained largely by the effect of root temperature on the roots' capacity to transport water. Effects of a shortage in water supply on carbon partitioning are unambiguous: roots receive relatively more carbon. The pattern of biomass allocation in the vegetative stage and variation in water-use efficiency are prime factors determining a plant's potential for early growth and yield in different environments. In a comparison of a range of T. aestivum cultivars, a high water-use efficiency at the plant level correlates positively with a large investment in both leaf and root biomass, a low stomatal conductance and a large investment in photosynthetic capacity. We also present evidence that a lower investment of biomass in roots is not only associated with lower respiratory costs for root growth, but also with lower specific costs for ion uptake. We suggest the combination of a number of traits in future wheat cultivars, i.e. a high investment of biomass in leaves, which have a low stomatal conductance and a high photosynthetic capacity, and a low investment of biomass in roots, which have low respiratory costs. Such cultivars are considered highly appropriate in a future world, especially in the dryer regions. Although variation for the desired traits already exists among wheat cultivars, it is much larger among wild Aegilops species, which can readily be crossed with T. aestivum. Such wild relatives may be exploited to develop new wheat cultivars well-adapted to changed climatic conditions.  相似文献   
7.
8.
Intra‐cohort cannibalism is an example of a size‐mediated priority effect. If early life stages cannibalize slightly smaller individuals, then parents face a trade‐off between breeding at the best time for larval growth or development and predation risk from offspring born earlier. This game‐theoretic situation among parents may drive adaptive reproductive phenology toward earlier breeding. However, it is not straightforward to quantify how cannibalism affects seasonal egg fitness or to distinguish emergent breeding phenology from alternative adaptive drivers. Here, we devise an age‐structured game‐theoretic mathematical model to find evolutionary stable breeding phenologies. We predict how size‐dependent cannibalism acting on eggs, larvae, or both changes emergent breeding phenology and find that breeding under inter‐cohort cannibalism occurs earlier than the optimal match to environmental conditions. We show that emergent breeding phenology patterns at the level of the population are sensitive to the ontogeny of cannibalism, that is, which life stage is subject to cannibalism. This suggests that the nature of cannibalism among early life stages is a potential driver of the diversity of reproductive phenologies seen across taxa and may be a contributing factor in situations where breeding occurs earlier than expected from environmental conditions.  相似文献   
9.
Aim During recent and future climate change, shifts in large‐scale species ranges are expected due to the hypothesized major role of climatic factors in regulating species distributions. The stress‐gradient hypothesis suggests that biotic interactions may act as major constraints on species distributions under more favourable growing conditions, while climatic constraints may dominate under unfavourable conditions. We tested this hypothesis for one focal tree species having three major competitors using broad‐scale environmental data. We evaluated the variation of species co‐occurrence patterns in climate space and estimated the influence of these patterns on the distribution of the focal species for current and projected future climates. Location Europe. Methods We used ICP Forest Level 1 data as well as climatic, topographic and edaphic variables. First, correlations between the relative abundance of European beech (Fagus sylvatica) and three major competitor species (Picea abies, Pinus sylvestris and Quercus robur) were analysed in environmental space, and then projected to geographic space. Second, a sensitivity analysis was performed using generalized additive models (GAM) to evaluate where and how much the predicted F. sylvatica distribution varied under current and future climates if potential competitor species were included or excluded. We evaluated if these areas coincide with current species co‐occurrence patterns. Results Correlation analyses supported the stress‐gradient hypothesis: towards favourable growing conditions of F. sylvatica, its abundance was strongly linked to the abundance of its competitors, while this link weakened towards unfavourable growing conditions, with stronger correlations in the south and at low elevations than in the north and at high elevations. The sensitivity analysis showed a potential spatial segregation of species with changing climate and a pronounced shift of zones where co‐occurrence patterns may play a major role. Main conclusions Our results demonstrate the importance of species co‐occurrence patterns for calibrating improved species distribution models for use in projections of climate effects. The correlation approach is able to localize European areas where inclusion of biotic predictors is effective. The climate‐induced spatial segregation of the major tree species could have ecological and economic consequences.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号