首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2942篇
  免费   194篇
  国内免费   246篇
  2023年   45篇
  2022年   50篇
  2021年   58篇
  2020年   60篇
  2019年   106篇
  2018年   76篇
  2017年   77篇
  2016年   66篇
  2015年   73篇
  2014年   128篇
  2013年   260篇
  2012年   94篇
  2011年   128篇
  2010年   101篇
  2009年   155篇
  2008年   147篇
  2007年   176篇
  2006年   167篇
  2005年   154篇
  2004年   120篇
  2003年   144篇
  2002年   120篇
  2001年   125篇
  2000年   67篇
  1999年   74篇
  1998年   62篇
  1997年   49篇
  1996年   49篇
  1995年   47篇
  1994年   48篇
  1993年   34篇
  1992年   49篇
  1991年   37篇
  1990年   24篇
  1989年   12篇
  1988年   18篇
  1987年   18篇
  1986年   11篇
  1985年   21篇
  1984年   31篇
  1983年   19篇
  1982年   23篇
  1981年   15篇
  1980年   15篇
  1979年   13篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1973年   3篇
排序方式: 共有3382条查询结果,搜索用时 0 毫秒
1.
The present study was undertaken to comparatively investigate the attachment capacities of Azospirillum brasilenseSp245 and its lipopolysaccharide-defective Omegon-Km mutants KM018 and KM252, as well as their activities with respect to the alteration of the morphology of wheat seedling root hairs. The adsorption dynamics of the parent Sp245 and mutant KM252 strains of azospirilla on the seedling roots of the soft spring wheat cv. Saratovskaya 29 were similar; however, the attachment capacity of the mutant KM252 was lower than that of the parent strain throughout the incubation period (15 min to 48 h). The mutation led to a considerable decrease in the hydrophobicity of the Azospirillumcell surface. The lipopolysaccharides extracted from the outer membrane of A. brasilenseSp245 and mutant cells with hot phenol and purified by chromatographic methods were found to induce the deformation of the wheat seedling root hairs, the lipopolysaccharide of the parent strain being the most active in this respect. The role of the carbohydrate moiety of lipopolysaccharides in the interaction of Azospirillumcells with plants is discussed.  相似文献   
2.
Ice crystal formation temperature was determined in the region of the crown in one group of 7-day-old intact unhardened high-salt plants of winter wheat (Triticum aestivum L. cv. Weibulls Starke II) with TA (Thermal Analysis) and DTA (Differential Thermal Analysis) methods. After exposure of another group of plants, grown for the first 7 days in the same way as the first group, to various sub-zero temperatures (-1 to 5°C), influx in roots of Rb+(86Rb+) and Ca2+(45Ca2+) and contents of K+ and Ca2+ were determined at intervals during 7 days of recovery. Ice crystal formation in the crown tissue was probably extracellular and took place at about -4°C. There was a large loss of K+ from the roots after treatment at sub-zero temperatures. This loss increased as the temperature of the sub-zero treatment decreased. During recovery, roots of plants exposed to -1, -2 and -3°C gradually reabsorbed K+. Reabsorption of K+ in roots of plants exposed to -4°C was greatly impaired. Rb+ influx decreased and Ca2+ influx increased after sub-zero temperature treatments of the plants. Active Rb+ influx mechanisms and active extrusion of Ca2+ were impaired or irreversibly damaged by the exposure. While Rb+ influx mechanisms were apparently repaired during recovery in plants exposed to temperatures down to -3°C, Ca2+ extrusion mechanisms were not. The temperature for ice crystal formation in the region of the crown tissue coincides with the temperature at which the plants lost the ability to reabsorb K+ and to repair Rb+ influx mechanisms during the recovery period. Plants were lethally damaged at temperatures below ?4°C.  相似文献   
3.
The adsorption and immobilisation of human insulin onto the bio-compatible nanosheets including graphene monoxide, silicon carbide and boron nitride nanosheets were studied by molecular dynamics simulation at the temperature of 310 K. After equilibration, heating and 100 ns production molecular dynamic runs, it was found that the insulin was adsorbed and immobilised onto the considered surfaces in a native folded state. The structural parameters, including root-mean-square deviation and fluctuation, surface accessible solvent area, radius of gyration (Rg) and the distance between the centre of the mass of immobilised protein and the surface of the considered nanosheets, were measured, analysed and discussed. The energetics of the studied systems such as the interaction energy between protein and nanosheet was also measured and addressed. The discussions were centred on the structural and energetic parameters of the protein and nanosheets, including charge density, hydrophobicity, hydrophilicity and residue polarity. The results also showed that the active site of C-termini of chain B played an important role in the adsorption process and this could be helpful in the protection of insulin in its smart delivery and release applications.  相似文献   
4.
5.
The transfer of substances across the interface between water and a membrane or between water and a solvent occurs in series with transport up to and away from the interface. These processes have been difficult to resolve. Recently D. M. Miller (Biochim Biophys Acta 856: 27–35, 1986) has used a moving drop technique to measure the rates of transfer of short-chain alcohols and tritiated water between water andn-octanol. This technique produces equivalent unstirred layers which are less than about 10 m thick. Based on the trends in the observed rates of phase transfer, he proposes that the transfer is limited by the actual interfacial step. If so, water-oil interfacial transfer would be sufficiently slow to limit the rate of permeation of lipid membranes by these substances. It is shown here that the observed rates of phase transfer can be explained quantitatively if they are limited by convection or by diffusion across the combination of 5–10 m unstirred layers both inside and outside the moving drops. For water, comparison of the observed rates with the rate of evaporation from a clean surface, suggests that the interfacial step at the water-octanol interface is not rate-limiting.  相似文献   
6.
Differential thermal analysis indicated that the frost resistance of winter rape leaves ( Brassica napus L. var. oleifera L. cv. Gòrczanski), collected from plants grown in the cold (5/2°C), relies mainly on their ability to supercool to −9 to −11°C, i.e. consists in freezing avoidance. Initiation of ice formation in the cold-acclimated leaves resulted in the death of more than 50% of the cells as determined with a conductivity method. The development of freezing tolerance appeared to be an attribute of the second stage of plant hardening and was induced by the exposure of plants to a slightly subzero temperature (−5°C) for 18 h. Such a treatment brought about a sudden and persistent water potential decrease in the leaves, despite the fact that they had reabsorbed water from the medium prior to water potential measurements. Water potential changes were associated with a higher growth capability of the leaves as checked by determinations of disk area increments. It is suggested that the increased frost tolerance of the cold-grown winter rape leaves, subjected to subfreezing temperature, is related to the decreased water potential of the tissue caused by changes in turgor and/or in osmotic pressures of the cells.  相似文献   
7.
For three acid soils from Santa Catarina, Brazil, lime application and time of incubation with lime had little effect on the adsorption of added phosphorus. In two soils with high contents of exchangeable aluminium, solution P and isotopically exchangeable P were decreased by incubating with lime for 1 month: phosphorus was probably adsorbing on freshly precipitated aluminium hydrous oxides. In one soil with less exchangeable aluminium, P in solution was increased by liming. After 23 months lime increased solution and exchangeable P possibly due to crystallization of aluminium hydrous oxides reducing the number of sites for P adsorption. All these changes were however small. In a pot experiment, lime and phosphorus markedly increased barley shoot and root dry matter and P uptake. Although liming reduced P availability measured by solution P, isotopically exchangeable P and resin extractable P, it increased phosphorus uptake by reducing aluminium toxicity and promoting better root growth. The soil aluminium saturation was reduced by liming, but the concentration of aluminium in roots changed only slightly. The roots accumulated aluminium without apparently being damaged.  相似文献   
8.
Effects of tissue position (viz. outer vs inner mesocarp) and heat treatment (48°C, 20 min) on variations in polygalacturonase (EC 3.2.1.15 and EC 3.2.1.67) activity and ripening of fruits of Carica papaya L. cv. Backcross Solo were investigated. Polygalacturonase activity increased during ripening concomitantly with an increase in tissue softness and soluble polyuronide level. Throughout ripening, inner mesocarp tissue was softer and contained higher polygalacturonase activity than outer mesocarp tissue. Titratable acidity as well as ß-galactosidase (EC 3.2.1.23) activity also increased during ripening; however, unlike polygalacturonase, their level or activity was lower in inner than in outer mesocarp. Ascorbic acid could partially account for the increase in titratable acidity during ripening but contributed very little to the differences in titratable acid levels between outer and inner mesocarp. Heat treatment had no effect on either fruit softness or titratable acidity, but it markedly reduced the increase in ascorbic acid and polygalacturonase activity during ripening. Ripening, as reflected by changes in tissue softness and polygalacturonase activity, progressed outwardly from the interior towards the exterior of the fruit. The effect of heat treatment in suppressing polygalacturonase activity was relatively greater in inner than in outer mesocarp, suggesting that sensitivity of the enzyme to heat treatment may vary with stage of ripeness of the tissue.  相似文献   
9.
The effectiveness of sphagnum peat, zeolite (clinoptilonite) and basalt in reducing ammonia losses during aerobic manure decomposition was determined in an incubation experiment. Peat placed in the spent air-stream adsorbed all of the ammonia volatilized during the first 8 days of decomposition, and reduced overall ammonia losses by 59%. Zeolite reduced total ammonia losses by 16%, and basalt by 6%.All adsorbents were considerably less effective in reducing ammonia losses when mixed with the manure. Reductions in ammonia losses of 24% and 1.5% were obtained with the peat and zeolite, respectively. The addition of basalt increased losses.Ammonia and ammonium adsorption isotherms were determined for the three materials. The adsorption capacities and affinity terms of the adsorbents calculated from the isotherms, reflected their ability to reduce ammonia losses in the incubation experiment. Zeolite had both the highest affinity for ammonium and the highest ammonium adsorption capacity. The peat had a very high affinity for ammonia and a high adsorption capacity (23.4 mg NH3–N g–1), whereas zeolite and basalt had a much lower adsorption capacity (1.8 and 0.05 mg NH3–N g–1, respectively) compared with their capacity to adsorb ammonium (18.1 and 0.18 mg NH4–N g–1).  相似文献   
10.
Adjustments to profile likelihood   总被引:1,自引:0,他引:1  
FRASER  D. A. S.; REID  N. 《Biometrika》1989,76(3):477-488
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号