首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5101篇
  免费   477篇
  国内免费   515篇
  2024年   13篇
  2023年   118篇
  2022年   116篇
  2021年   175篇
  2020年   197篇
  2019年   214篇
  2018年   198篇
  2017年   214篇
  2016年   200篇
  2015年   189篇
  2014年   268篇
  2013年   360篇
  2012年   194篇
  2011年   224篇
  2010年   216篇
  2009年   280篇
  2008年   278篇
  2007年   284篇
  2006年   248篇
  2005年   228篇
  2004年   196篇
  2003年   163篇
  2002年   162篇
  2001年   134篇
  2000年   119篇
  1999年   110篇
  1998年   96篇
  1997年   76篇
  1996年   84篇
  1995年   76篇
  1994年   87篇
  1993年   59篇
  1992年   66篇
  1991年   57篇
  1990年   54篇
  1989年   37篇
  1988年   29篇
  1987年   30篇
  1986年   20篇
  1985年   38篇
  1984年   33篇
  1983年   21篇
  1982年   26篇
  1981年   27篇
  1980年   21篇
  1979年   13篇
  1978年   10篇
  1977年   13篇
  1976年   5篇
  1975年   6篇
排序方式: 共有6093条查询结果,搜索用时 31 毫秒
1.
It has been suggested by some authors that the low fruit to flower ratio in some Proteaceae is due to andromonoecy, while others, looking particularly at Banksia , have not been able to find evidence for male flowers in the inflorescences. Stirlingia latifolia, Xylomelum occidentals and X. angustifolium are clearly andromonoecous, while no evidence for this condition could be found in Brabejum stellatifoliutn. Production of fertile fruit is related to andromonoecy in Xylomelum and S. latifolia but not in Brabejum. It is unlikely that all-encompassing solutions will be found to what initially seem to be widespread traits in the family, especially in regard to pollination biology, as the genera in the family occupy widely different environments and have very diverse ecological ranges.  相似文献   
2.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
3.
The origin of nervous systems is a main theme in biology and its mechanisms are largely underlied by synaptic neurotransmission. One problem to explain synapse establishment is that synaptic orthologs are present in multiple aneural organisms. We questioned how the interactions among these elements evolved and to what extent it relates to our understanding of the nervous systems complexity. We identified the human neurotransmission gene network based on genes present in GABAergic, glutamatergic, serotonergic, dopaminergic, and cholinergic systems. The network comprises 321 human genes, 83 of which act exclusively in the nervous system. We reconstructed the evolutionary scenario of synapse emergence by looking for synaptic orthologs in 476 eukaryotes. The Human–Cnidaria common ancestor displayed a massive emergence of neuroexclusive genes, mainly ionotropic receptors, which might have been crucial to the evolution of synapses. Very few synaptic genes had their origin after the Human–Cnidaria common ancestor. We also identified a higher abundance of synaptic proteins in vertebrates, which suggests an increase in the synaptic network complexity of those organisms.  相似文献   
4.
Emerging infectious diseases threaten a wide diversity of animals, and important questions remain concerning disease emergence in socially structured populations. We developed a spatially explicit simulation model to investigate whether—and under what conditions—disease-related mortality can impact rates of pathogen spread in populations of polygynous groups. Specifically, we investigated whether pathogen-mediated dispersal (PMD) can occur when females disperse after the resident male dies from disease, thus carrying infections to new groups. We also examined the effects of incubation period and virulence, host mortality and rates of background dispersal, and we used the model to investigate the spread of the virus responsible for Ebola hemorrhagic fever, which currently is devastating African ape populations. Output was analyzed using regression trees, which enable exploration of hierarchical and non-linear relationships. Analyses revealed that the incidence of disease in single-male (polygynous) groups was significantly greater for those groups containing an average of more than six females, while the total number of infected hosts in the population was most sensitive to the number of females per group. Thus, as expected, PMD occurs in polygynous groups and its effects increase as harem size (the number of females) increases. Simulation output further indicated that population-level effects of Ebola are likely to differ among multi-male–multi-female chimpanzees and polygynous gorillas, with larger overall numbers of chimpanzees infected, but more gorilla groups becoming infected due to increased dispersal when the resident male dies. Collectively, our results highlight the importance of social system on the spread of disease in wild mammals.  相似文献   
5.
《植物生态学报》2016,40(8):748
Aims Grazing intensity and grazing exclusion affect ecosystem carbon cycling by changing the plant community and soil micro-environment in grassland ecosystems. The aims of this study were: 1) to determine the effects of grazing intensity and grazing exclusion on litter decomposition in the temperate grasslands of Nei Mongol; 2) to compare the difference between above-ground and below-ground litter decomposition; 3) to identify the effects of precipitation on litter production and decomposition. Methods We measured litter production, quality, decomposition rates and soil nutrient contents during the growing season in 2011 and 2012 in four plots, i.e. light grazing, heavy grazing, light grazing exclusion and heavy grazing exclusion. Quadrate surveys and litter bags were used to measure litter production and decomposition rates. All data were analyzed with ANOVA and Pearson’s correlation procedures in SPSS. Important findings Litter production and decomposition rates differed greatly among four plots. During the two years of our study, above-ground litter production and decomposition in heavy-grazing plots were faster than those in light-grazing plots. In the dry year, below-ground litter production and decomposition in light-grazing plots were faster than those in heavy-grazing plots, which is opposite to the findings in the wet year. Short-term grazing exclusion could promote litter production, and the exclusion of light-grazing could increase litter decomposition and nutrient cycling. In contrast, heavy-grazing exclusion decreased litter decomposition. Thus, grazing exclusion is beneficial to the restoration of the light-grazing grasslands, and more human management measures are needed during the restoration of heavy-grazing grasslands. Precipitation increased litter production and decomposition, and below-ground litter was more vulnerable to the inter-annual change of precipitation than above-ground litter. Compared to the light-grazing grasslands, heavy-grazing grasslands had higher sensitivity to precipitation. The above-ground litter decomposition was strongly positively correlated with the litter N content (R2 = 0.489, p < 0.01) and strongly negatively correlated with the soil total N content (R2 = 0.450, p < 0.01), but it was not significantly correlated with C:N and lignin:N. Below-ground litter decomposition was negatively correlated with the litter C (R2 = 0.263, p < 0.01), C:N (R2 = 0.349, p < 0.01) and cellulose content (R2 = 0.460, p < 0.01). Our results will provide a theoretical basis for ecosystem restoration and the research of carbon cycling.  相似文献   
6.
7.
8.
The differently sulfonated styrene–divinylbenzene cross-linked copolymer cationic exchange resins were prepared by oil-in-water polymerization and varied degrees of sulfonation. Several characteristics of the obtained resins were evaluated, i.e., Fourier transform infrared spectra, the ion-exchange capacity, microscopic morphology, size, and swelling. The resin characteristics were altered in relation to the degree of sulfonation, proving that differently sulfonated resins could be prepared. The behavior of chlorpheniramine (CPM) loading and in vitro release in the USP simulated gastric (SGF) and intestinal fluids (SIF) of the obtained resins were also evaluated. The CPM loaded in the resinates (drug-loaded resins) increased with the increasing degree of sulfonic group and hence the drug binding site in the employed resins. The CPM release was lower from the resins with the higher degree of sulfonic group due to the increase in the diffusive path depth. The CPM release was obviously lower in SGF than SIF because CPM, a weak base drug, ionized to a greater extent in SGF and then preferred binding with rather than releasing from the resins. In conclusion, the differently sulfonated resins could be utilized as novel carriers for drug delivery.  相似文献   
9.
10.
A simple, rapid, and inexpensive method for the preparation and purification of chloroplast DNA (cpDNA) from pea has been developed. The crucial step is the isolation of chloroplasts in a medium of high ionic strength (I congruent equal to 1.40 M). CpDNA from pea prepared according to this method has successfully been used for restriction enzyme mapping, Southern transfers, and cloning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号