首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2019年   1篇
  2009年   2篇
  2003年   3篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Leadership of travel progression is an important aspect of group living. It is widely believed that trichromacy evolved to facilitate the detection and selection of fruit in the dappled light of a forest. Further, it has been proposed that in New World primate species, which typically contain a range of color vision phenotypes, at least one female in a group will be trichromatic (i.e., having three types of visual pigment, in contrast to the two types of pigment found in dichromatic individuals) and will lead the group to fruiting trees. We examine progression leadership within two wild mixed-species troops of saddleback (Saguinus fuscicollis) and mustached (Saguinus mystax) tamarins over a complete year. As whole units, the mixed-species troops were most frequently led by a mustached tamarin. This is the first time that mixed-species group leadership and individual leadership have been quantified in these tamarin species. In terms of single-species intragroup leadership, neither the visual status (dichromatic or trichromatic) nor the sex of individuals had a consistent effect across species. Saddleback tamarin groups were led by males more frequently than females, while evidence suggests that mustached tamarins may be female-led. The notion that all groups contain at least one trichromatic female that leads the troop to feeding trees was not supported.  相似文献   
2.
Most species of New World primates have an unusual color vision pattern that can affect an individual's ability to detect food. Whereas males can only be dichromatic, females can be either dichromatic or trichromatic. Trichromats are expected to have an advantage in detecting conspicuous food whereas dichromats should be better at locating cryptic resources. Here we aimed to understand how color vision phenotype influences insect foraging by five groups of common marmosets living in a semiarid environment. We recorded insect predation events, noting morphotype and color of the captured insect, and the substrate from which it was captured. Color modeling suggested that, for all values of chromatic contrast resulting from comparing the measured insect–substrate pairs, trichromats outperformed dichromats. Females showed an overall higher insect capture rate than males. Females also showed a higher capture rate of conspicuous insects but there was no sex difference for the capture of cryptic insects. When we compared only dichromatic individuals there was no difference between sexes. These findings suggest that differences found in capture rate related not only to sex but also to visual polymorphism and that the latter is a crucial factor determining insect capture rate in common marmosets. Nevertheless, these results should be interpreted with caution because of the small number (three) of dichromat females and the unknown phenotype of the remaining females. Our results support the balancing selection hypothesis, suggesting that the advantage of one phenotype over the other may depend on environmental circumstances. This hypothesis has recently been considered as the most plausible for the maintenance of visual polymorphism in New World primates.  相似文献   
3.
Colour vision allows animals to reliably distinguish differences in the distributions of spectral energies reaching the eye. Although not universal, a capacity for colour vision is sufficiently widespread across the animal kingdom to provide prima facie evidence of its importance as a tool for analysing and interpreting the visual environment. The basic biological mechanisms on which vertebrate colour vision ultimately rests, the cone opsin genes and the photopigments they specify, are highly conserved. Within that constraint, however, the utilization of these basic elements varies in striking ways in that they appear, disappear and emerge in altered form during the course of evolution. These changes, along with other alterations in the visual system, have led to profound variations in the nature and salience of colour vision among the vertebrates. This article concerns the evolution of colour vision among the mammals, viewing that process in the context of relevant biological mechanisms, of variations in mammalian colour vision, and of the utility of colour vision.  相似文献   
4.
An advantage for trichromatic color vision in primates is shown by its presence in many lineages, but little attention has been paid to the potential disadvantages of trichromacy. Most New World monkey species are polymorphic for color vision, with both dichromats and trichromats present within a single population. We tested the foraging ability of trichromatic and dichromatic Geoffroy's marmosets (Callithrix geoffroyi) for colored cereal balls (Kix®) under conditions of red-green color camouflage (orange/green Kix® against an orange/green background) or lack of camouflage (Kix® same color as background) in a naturalized captive setting. In separate experiments designed to test foraging ability at long distances (<6 m) and short distances (<0.5 m), trichromats found significantly fewer Kix® under the camouflage condition than in the non-camouflage condition. In contrast, there is no difference in the ability of dichromats to detect color-camouflaged versus non-camouflaged Kix®. There is no significant difference between dichromats and trichromats for either camouflaged or non-camouflaged Kix®, though the power in the tests is low because of high individual variation. The results have clear implications for the foraging strategies of trichromatic marmosets. Differences in intensity of competition between trichromats and dichromats for items of food of different colors in relation to background may also have consequences for the foraging behavior of dichromats.  相似文献   
5.
Among primates, catarrhines (Old World monkeys and apes) andcertain platyrrhines (New World monkeys) possess trichromaticcolor vision, which might confer important evolutionary advantages,particularly during foraging. Recently, a polymorphism has beenshown to shift the spectral sensitivity of the X-linked opsinprotein in certain strepsirrhines (e.g., Malagasy lemurs); however,its behavioral significance remains unknown. We assign genotypesat the X-linked variant to 45 lemurs, representing 4 species,and test if the genetic capacity for trichromacy impacts foragingperformance, particularly under green camouflage conditionsin which red detection can be advantageous. We confirm polymorphismat the critical site in sifakas and ruffed lemurs and fail tofind this polymorphism in collared lemurs and ring-tailed lemurs.We show that this polymorphism may be linked to "behavioraltrichromacy" in heterozygous ruffed lemurs but find no comparableevidence in a single heterozygous sifaka. Despite their putativedichromatic vision, female collared lemurs were surprisinglyefficient at retrieving both red and green food items undercamouflage conditions. Thus, species-specific feeding ecologiesmay be as important as trichromacy in influencing foraging behavior.Although the lemur opsin polymorphism produced measurable behavioraleffects in at least one species, the ruffed lemur, these effectswere modest, consistent with the modest shift in spectral sensitivity.Additionally, the magnitude of these effects varied across individualsof the same genotype, emphasizing the need for combined geneticand behavioral studies of trichromatic vision. We conclude thattrichromacy may be only one of several routes toward increasedforaging efficiency in visually complex environments.  相似文献   
6.
We present a quantitative means of assessing the conspicuousness of animal coats or other objects in terms of the color vision of each possible observer. We measured reflectance spectra from the fur and skin of many primate species in order to provide an objective survey of the possibilities of pelage coloration found in extant primates. We show that the orange coloration displayed by many platyrrhine and some strepsirhine primates, while being conspicuous to humans, would be cryptic amongst foliage to all males and many females of their own species. In relation to this finding, we briefly review what is known of the color vision of birds that prey on primates, and assess how conspicuous the orange pelage would be to these predators.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号