首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  6篇
  2019年   1篇
  2009年   1篇
  2007年   1篇
  1998年   1篇
  1995年   2篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
The aim of this study was to explore the mechanisms of brain damage induced by the combined treatment of mice with 1,2‐dichloroethane (1,2‐DCE) and ethanol. Mice were divided into control group; 1,2‐DCE‐intoxicated group; ethanol‐treated group; and low‐, medium‐, and high‐dose combined treatment groups. Histological observations along with brain organ coefficients and water content were used to measure the brain damage directly and indirectly. The levels of nonprotein sulfhydryls, malondialdehyde (MDA), and superoxide dismutase activity were used as parameters to evaluate oxidative stress in the brain. Protein and messenger RNA (mRNA) levels of cytochrome P450 2E1 (CYP2E1), zonula occludens‐1 (occludin and zo‐1), aquaporin‐4 (AQP4), nuclear factor erythroid 2‐related factor 2 (Nrf2), heme oxygenase (HO)‐1, and the γ‐glutamyl cysteine synthetase catalytic and modulatory subunits (γ‐GCSc, GR, and γ‐GCSm) in the brain were examined by Western blot analysis and quantitative polymerase chain reaction analysis, respectively. Effects of the combined treatment of 1,2‐DCE and ethanol were evaluated by analysis of variance with a factorial design. The results suggested that combined exposure to ethanol and 1,2‐DCE synergistically increased CYP2E1 protein and mRNA levels, accelerated the metabolism of ethanol and 1,2‐DCE in the brain tissue, induced high production of reactive oxygen species (ROS), and increased MDA levels, thereby damaging the blood‐brain barrier and causing obvious pathological changes in brain tissue. However, the increased level of ROS activated the Nrf2 signal transduction pathway, promoting the expression of HO‐1 and glutathione‐related antioxidant enzymes in the brain to protect the cells from oxidative damage.  相似文献   
2.
Although anaerobic bioremediation of chlorinated organic contaminants in the environment often requires exogenous supply of hydrogen as an electron donor, little is known about the ability of hydrogen-producing bacteria to grow in the presence of chlorinated solvents. In this study, 18 Clostridium strains including nine uncharacterized isolates originating from chlorinated solvent contaminated groundwater were tested to determine their ability to fermentatively produce hydrogen in the presence of three common chlorinated aliphatic groundwater contaminants: 1,2-dichloroethane (DCA), 1,1,2-trichloroethane (TCA), and tetrachloroethene (PCE). All strains produced hydrogen in the presence of at least 7.4 mM DCA, 2.4 mM TCA, and 0.31 mM PCE. Some strains produced hydrogen in media containing concentrations as high as 29.7 mM DCA, 9.8 mM TCA, and 1.1 mM PCE. None of the strains biotransformed chlorinated solvents under the conditions tested. Results demonstrate that many Clostridium species are chlorinated solvent tolerant, producing hydrogen even in the presence of high concentrations of DCA, TCA, and PCE. These findings have important implications for bioremediation of contaminated soil and groundwater.  相似文献   
3.
This article reports a novel nondisruptive technique for measuring the thicknesses of membrane-attached biofilms in situ, using a single tube extractive membrane bioreactor (STEMB). The biodegradation of a toxic volatile organic compound (VOC) (1,2-dichloroethane [DCE]) by Xanthobacter autotrophicus GJ10 has been used as a model system to develop the technique. The results give information on the biomass-silicone rubber attachment phenomena, and on the development over time of biofilms growing on the silicone membrane, without disrupting operation. Experimental results are presented showing the evolution over time of biofilm thickness, and also the density of biofilms for four experimental runs. The hydrodynamic conditions on the biomedium side of the membrane were found to influence the initial attachment phenomena and subsequent biofilm growth. (c) 1995 John Wiley & Sons, Inc.  相似文献   
4.
Natural attenuation of benzene and dichloroethanes in groundwater contaminated by leachate from the West KL Avenue landfill in Kalamazoo, Michigan, was evaluated in three phases. Existing data from the previous site investigations were used to locate a series of high-resolution vertical profile samples. By analyzing data from the discrete vertical profile samples, the rates of attenuation of benzene and dichloroethanes in the plume were forecasted. Permanent monitoring wells were installed over the depth intervals associated with high concentrations in the vertical profile sampling. These wells were monitored over time to extract independent estimates of the rates of degradation of benzene and dichloroethanes. Estimates of first-order attenuation rate constants were obtained using two methods: a method due to Buscheck and Alcantar (1995), which is based on a one-dimensional steady-state analytical solution, and the tracer correction method of Wiedemeier et al. (1996). The rates of attenuation predicted from the vertical profile sampling were found to be in good agreement with the rates obtained from the permanent monitoring well data, indicating that the long-term behavior of the contaminant plumes is consistent with the initial forecast. The results also indicated that the natural attenuation of benzene, 1,1-dichloroethane (DCA), and 1,2-DCA was statistically significant (at the 0.05 level).  相似文献   
5.
This article reports a study of the performance of membrane-attached biofilms grown in a single tube extractive membrane bioreactor (STEMS) used for the treatment of a synthetic wastewater containing a toxic VOC (1,2-dichloroethane [DCE]). Mass balances show that complete mineralization of DCE was achieved, and that the biofilms were effective in reducing air stripping to negligible levels. Experimental results are presented showing the evolution over time of biofilm thickness and its influence on the flux of DCE across the membrane. It has been found that a trade-off exists between the positive influence of biofilms in reducing air-stripping of DCE, and the negative influence of biofilms in reducing DCE flux across the membrane. These considerations lead to an optimal biofilm thickness in the region of 200 to 400 mum being recommended for this system. (c) 1995 John Wiley & Sons, Inc.  相似文献   
6.
This work investigates the use of an oil absorber as an operational strategy in vapor phase bioreactors exposed to starvation periods, during the treatment of inhibitory pollutants. After being exposed to 1,2-dichloroethane (DCE) starvation periods, the response and stability of a combined oil-absorber-bioscrubber (OAB) system was compared to that of a bioscrubber only (BO) system. In the BO system, after a 5.2 days starvation period, the DCE removal efficiency was reduced to 12%, and 6 days were needed to recover the initial removal efficiency when the DCE feed resumed. The total organic discharged (TOD(DCE)) was 16,500 g(DCE) m(bioscrubber) (-3) after the DCE starvation. Biomass analysis performed using fluorescence in situ hybridisation (FISH) showed that the microbial activity was significantly reduced during the starvation period and that 5 days were needed to recover the initial activity, after the re-introduction of DCE. In contrast, the performance of the OAB system was stable during 5.2 days of DCE starvation. The DCE removal efficiency was not affected when the DCE feed resumed and the TOD(DCE) was significantly reduced to 2,850 g(DCE) m(bioscrubber) (-3). During starvation, the activity of the microbial culture in the OAB system showed a substantially lower decrease than in the BO system and recovered almost immediately the initial activity after the re-introduction of DCE. Additionally, a mathematical model describing the performance of the OAB system was developed. The results of this study show that the OAB system can effectively sustain the biological treatment of waste gas during starvation periods of inhibitory pollutants.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号