首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   18篇
  国内免费   4篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   2篇
  2020年   7篇
  2019年   12篇
  2018年   9篇
  2015年   4篇
  2014年   12篇
  2013年   15篇
  2012年   2篇
  2011年   8篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   6篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   5篇
  1997年   3篇
  1996年   3篇
  1995年   7篇
  1994年   1篇
  1993年   5篇
  1992年   6篇
  1991年   4篇
  1990年   8篇
  1989年   11篇
  1988年   6篇
  1987年   7篇
  1986年   6篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   6篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有215条查询结果,搜索用时 328 毫秒
1.
The present study demonstrates the feasibility of measuring acetylcholine in perfusion samples collected by means of in vivo brain dialysis in the striata of freely moving rats. The output of the dialysis device was directly connected to an automated sample valve of a HPLC-assay system that comprises a cation exchanger, a post-column enzyme reactor, and an electrochemical detector. The presence of an acetylcholinesterase inhibitor (neostigmine) in the perfusion fluid was required for the detection of acetylcholine in the perfusate. Increasing concentrations of neostigmine induced increasing amounts of acetylcholine. Continuous perfusion with a fixed concentration (2 microM) of neostigmine resulted in gradually increasing amounts of collected acetylcholine over time although a considerable variation between successive samples exists. The brain dialysis technique was further validated by studying the effect of various drugs. Systemically administered atropine increased the output of acetylcholine, whereas the addition of tetrodotoxin to the perfusion fluid resulted in a complete disappearance of the neurotransmitter.  相似文献   
2.
To determine the level of cerebral blood flow reduction which causes striatal dopamine release, extracellular dopamine and cerebral blood flow was simultaneously determined using in vivo brain dialysis and a hydrogen clearance method, respectively, in the striatum of spontaneously hypertensive rats, before and during experimental cerebral ischemia. The ischemic flow threshold for neurotransmitter dopamine release was found to be 20% of the resting value or 8–10 ml/100g/min of cerebral blood flow, being similar to those for energy and membrane failures.  相似文献   
3.
A hybridoma cell was cultivated continuously in a membrane dialysis bioreactor with an integrated radial-flow fixed bed consisting of porous Siran® carriers over a period of 6 weeks. Antibodies accumulated to an average of 100 mg l?1, approx. 10 times more than in fixed bed cultures without dialysis membrane. Serum costs could be reduced about 85% due to an appropriate feeding strategy. Siran® carriers with 3–5 mm diameter showed an advantage compared to those with 1–2 mm diameter. For the 3–5 mm carrier the specific glucose uptake rate and the MAb production rate were constant, if the velocity was between 0.09 mm s?1 and 0.75 mm s?1. At higher velocities cells are washed out of the bed. Furthermore antibody consistency and cell stability were verified in long-term cultivations over a period of 96 days. From an estimation of the antibody concentration reachable with the reactor concept under optimal conditions a concentration 45 times higher compared to axial-flow fixed bed reactors and 11 times higher compared to stirred tank reactors can be expected.  相似文献   
4.
The release of endogenous noradrenaline was measured in the cerebral cortex of the halothane-anesthetized rat by using the technique of brain dialysis coupled to a radioenzymatic assay. A thin dialysis tube was inserted transversally in the cerebral cortex (transcortical dialysis) and perfused with Ringer medium (2 microliter min-1). Under basal conditions, the cortical output of noradrenaline was stable over a period of at least 6 h and amounted to 8.7 pg/20 min (not corrected for recovery). Histological control of the perfused area revealed very little damage and normal morphology in the vicinity of the dialysis tube. Omission of calcium from the perfusion medium caused a marked drop in cortical noradrenaline output. Bilateral electrical stimulation (for 10 min) of the ascending noradrenergic pathways in the medial forebrain bundle caused a frequency-dependent increase in cortical noradrenaline output over the range 5-20 Hz. Stimulation at a higher frequency (50 Hz) resulted in a levelling off of the increase in cortical noradrenaline release. Systemic administration of the dopamine-beta-hydroxylase inhibitor bis-(4-methyl-1-homopiperazinylthiocarbonyl) disulfide (FLA 63) (25 mg/kg i.p.) markedly reduced, whereas injection of the monoamine oxidase inhibitor pargyline (75 mg/kg i.p.) resulted in a progressive increase in, cortical noradrenaline output. d-Amphetamine (2 mg/kg i.p.) provoked a sharp increase in cortical noradrenaline release (+450% over basal values within 40 min). Desmethylimipramine (10 mg/kg i.p.) produced a twofold increase of cortical noradrenaline release. Finally, idazoxan (20 mg/kg i.p.) and clonidine (0.3 mg/kg i.p.), respectively, increased and decreased the release of noradrenaline from the cerebral cortex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
5.
Hypoglycemia-evoked changes in levels of extracellular excitatory and inhibitory amino acids were studied using the microdialysis technique. A newly designed dialysis probe was inserted stereotaxically into the rat hippocampus. Animals were then subjected to insulin-induced hypoglycemia; then blood glucose levels were restored by glucose injections after a 30-min period of isoelectric electroencephalography. Dialysates were collected before, during, and after the isoelectric period. Amino acids in the dialysates were analyzed by liquid chromatography and fluorescence detection following automatic precolumn derivatization with o-phthaldialdehyde. During the isoelectric phase, the concentration of aspartate increased 15-fold, whereas glutamate, gamma-amino-butyric acid, taurine, and phosphoethanolamine levels were elevated three- to sixfold. Smaller increases were observed for nonneuroactive amino acids such as asparagine, alanine, and phenylalanine. In contrast to all other amino acids, the glutamine content was reduced to less than 30% of preisoelectric values. The concentrations of the neuroactive amino acids were restored to normal in the post-isoelectric phase. These data demonstrate that there is an extracellular overflow of neuroactive amino acids, especially aspartate, during severe hypoglycemia.  相似文献   
6.
The effect of N-methyl-D,L-aspartic acid (NMA) on extracellular amino acids was studied in the rabbit hippocampus with the brain dialysis technique. Administration of 0.5 or 5 mM NMA caused a concentration-dependent liberation of taurine and phosphoethanolamine (PEA). Taurine increased by 1,200% and PEA by 2,400% during perfusion with 5 mM NMA whereas most other amino acids rose by 20-100%. The effect of NMA appeared to be receptor-mediated, as coperfusion with D-2-amino-5-phosphonovaleric acid curtailed the NMA response by some 90%. The NMA-stimulated release of taurine and PEA was suppressed when Ca2+ was omitted and further inhibited when Co2+ was included in the perfusion medium. The effect of NMA was mimicked by the endogenous NMA agonist quinolinic acid and the partial NMA agonist D,L-cis-2,3-piperidine dicarboxylic acid. Although the NMA-evoked release of taurine and PEA was Ca2+-dependent in vivo, NMA had no effect on Ca2+ accumulation in hippocampal synaptosomes. The previously reported NMA-induced activation of dendritic Ca2+ spikes and the lack of effect on synaptosomal Ca2+ uptake suggest that taurine and PEA are released from sites other than nerve terminals, possibly from dendrosomatic sites. This notion was strengthened by the absence of an effect of NMA on the efflux of radiolabelled taurine from hippocampal synaptosomes. In contrast, high K+ stimulated synaptosomal uptake of Ca2+ and release of taurine.  相似文献   
7.
A dialysis unit was used to test whether direct physical contact between serum albumin and hamster spermatozoa is required for capacitation and/or the acrosome reaction. Sperm and bovine serum albumin (BSA) were incubated cither together (direct incubation) or separated by a dialysis membrane (indirect incubation). Sperm viability was supported with “sperm motility factors” (hypotaurine and epinephrine) and polyvinylalcohol (PVA). Spermatozoa became capacitated and underwent acrosome reactions when directly incubated in medium containing BSA (TALP-PVA), but did not undergo acrosome reactions when indirectly incubated with BSA (medium TLP-PVA). When sperm were first incubated for 4 hr indirectly with BSA, followed by 4 hr direct incubation with BSA, capacitation did not occur during indirect incubation. These findings indicate that an “intimate association” is necessary between serum albumin and spermatozoa to support capacitation under in vitro incubation conditions. The data are consistent with the concept of direct transfer of compounds from sperm to albumin and/or vice versa during sperm capacitation.  相似文献   
8.
A study of 239 patients compared free thyroxine (FT4) measurements made by equilibrium dialysis (ED) with measurements made using the Magic Lite FT4 chemiluminescence (Cl) immunoassay (Ciba Corning Immunodiagnostics). Patient groups: 41 normals; 27 hyperthyroid; 29 hypothyroid; 37 sick euthyroid; 10 chronic renal failure (CRF) and 25 pregnant patients; 13 oestrogen; 10 heparin; 12 salicylate; and 9 dilantin-treated patients; 3 lipaemic; 5 haemolysed; 6 hyperbilirubinaemic patients; 6 low thyroid binding protein (TBP) and 6 high TBP level patients. The two assays gave comparable results in most groups. Both assays tended to give elevated values in heparinized patients but FT4–ED results were more obviously affected. Pregnant patients and women on oral oestrogen had higher mean values with FT4–ED. In both assays the sick euthyroid and CRF patients had mean FT4 values similar to healthy euthyroid patients; the range of values in sick euthyroid and CRF patients was similar in both assays but wider than in healthy euthyroid patients. A supplemental study of 81 unselected acutely ill patients using FT4–Cl alone confirmed the wider range of values to be anticipated in sick euthyroid patients.  相似文献   
9.
Abstract: 3,4-Dihydroxyphenylacetic acid (DOPAC) is commonly considered to be the main dopamine (DA) metabolite produced by monoamine oxidase (MAO); however, the initial product of DA oxidation is 3,4-dihydroxyphenylacetaldehyde (DOPALD). Owing to technical difficulties in detecting DOPALD from a biological matrix, no studies have so far been performed to measure brain levels of this aldehyde in vivo. In this work, using transstriatal microdialysis in freely moving rats, we identified DOPALD by HPLC coupled to a coulometric detector. In chromatograms obtained from microdialysis samples, DOPALD appeared as a peak with a retention time coincident with that of the standards obtained via enzymatic and chemical synthesis. On the other hand, DOPALD was undetectable ex vivo from rat striatal homogenates. This discrepancy is probably due to the preferential extraneuronal localization together with the high reactivity of the aldehyde, which is rapidly removed by the dialysis probe, whereas the ex vivo procedure allows its condensation and enzymatic conversion. Measurement of DOPALD levels as a routine procedure might represent a reliable tool to evaluate DA oxidative metabolism directly, in vivo. Moreover, parallel detection of DOPALD and DOPAC levels in brain dialysate may make it possible to distinguish between the activity of MAO and aldehyde dehydrogenase. DOPALD, like many endogenous aldehydes, has been shown to be toxic to the cell in which it is formed. Therefore, in vivo measurement of DOPALD levels could highlight new aspects in the molecular mechanisms underlying both acute neurological insults and neurodegenerative diseases.  相似文献   
10.
Reduction in nutrient loss during dialysis cultivation of Escherichia coli on a glycerol medium was investigated. A dialysis reactor with an inner fermentation and an outer dialysis chamber was used. Aerobic condition was maintained by limiting the glycerol feed rate to an optimum value which was estimated from the oxygen requirements for glycerol oxidation and oxygen transfer capacity of the reactor. High reduction in nutrient loss was achieved by using water as the dialyzing fluid. However, osmotic movement of water from the dialysis to the fermentation chamber was observed, and the final cell concentration was low. With a nutrient-split feeding strategy (feeding glycerol directly to the fermentation chamber and dialyzing with salt solution), glycerol loss was small, there was no osmotic flux of water to the fermentation chamber, and the cell concentration was high. Both glycerol and salt loss could be avoided, and a cell concentration of 170 g/L was obtained when the dialysis process was substituted by addition of XAD adsorbents to the dialysis chamber. Application of this nutrient-split feeding strategy to cell cultivation in a stirred tank reactor, coupled with dialysis in external dialyzer modules, resulted in low cell concentrations. (c) 1993 Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号