首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2021年   1篇
  2015年   1篇
  2014年   2篇
排序方式: 共有4条查询结果,搜索用时 203 毫秒
1
1.
DNA double-strand breaks (DSBs) are highly cytotoxic lesions and pose a major threat to genome stability if not properly repaired. We and others have previously shown that a class of DSB-induced small RNAs (diRNAs) is produced from sequences around DSB sites. DiRNAs are associated with Argonaute (Ago) proteins and play an important role in DSB repair, though the mechanism through which they act remains unclear. Here, we report that the role of diRNAs in DSB repair is restricted to repair by homologous recombination (HR) and that it specifically relies on the effector protein Ago2 in mammalian cells. Interestingly, we show that Ago2 forms a complex with Rad51 and that the interaction is enhanced in cells treated with ionizing radiation. We demonstrate that Rad51 accumulation at DSB sites and HR repair depend on catalytic activity and small RNA-binding capability of Ago2. In contrast, DSB resection as well as RPA and Mre11 loading is unaffected by Ago2 or Dicer depletion, suggesting that Ago2 very likely functions directly in mediating Rad51 accumulation at DSBs. Taken together, our findings suggest that guided by diRNAs, Ago2 can promote Rad51 recruitment and/or retention at DSBs to facilitate repair by HR.  相似文献   
2.
Repair of DNA double-strand break(DSB) is critical for the maintenance of genome integrity. A class of DSB-induced small RNAs(di RNAs) has been shown to play an important role in DSB repair. In humans,di RNAs are associated with Ago2 and guide the recruitment of Rad51 to DSB sites to facilitate repair by homologous recombination(HR). Ago2 activity has been reported to be regulated by phosphorylation under normal and hypoxic conditions. However, the role of Ago2 phosphorylation in DNA damage repair is unexplored. Here, we show that S672, S828, T830, and S831 of human Ago2 are phosphorylated in response to ionizing radiation(IR). S672 A mutation of Ago2 leads to significant reduction in Rad51 foci formation and HR efficiency. We further show that defective association of Ago2 S672 A variant with DSB sites, instead of defects in di RNA and Rad51 binding, may account for decreased Rad51 foci formation and HR efficiency.Our study reveals a novel regulatory mechanism for the function of Ago2 in DNA repair.  相似文献   
3.
DNA double-strand breaks (DSBs) are among the most deleterious DNA lesions, which if unrepaired or repaired incorrectly can cause cell death or genome instability that may lead to cancer. To counteract these adverse consequences, eukaryotes have evolved a highly orchestrated mechanism to repair DSBs, namely DNA-damage-response (DDR). DDR, as defined specifically in relation to DSBs, consists of multi-layered regulatory modes including DNA damage sensors, transducers and effectors, through which DSBs are sensed and then repaired via DNAprotein interactions. Unexpectedly, recent studies have revealed a direct role of RNA in the repair of DSBs, including DSB-induced small RNA (diRNA)-directed and RNA-templated DNA repair. Here, we summarize the recent discoveries of RNA-mediated regulation of DSB repair and discuss the potential impact of these novel RNA components of the DSB repair pathway on genomic stability and plasticity.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号