首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
Most serpins irreversibly inactivate specific serine proteinases of the chymotrypsin family. Inhibitory serpins are unusual proteins in that their native structure is metastable, and rapid conversion to a relaxed state is required to trap target enzymes in a covalent complex. The evolutionary origin of the serpin fold is unresolved, and while serpins in animals are known to be involved in the regulation of a remarkable diversity of metabolic processes, the physiological functions of homologues from other phyla are unknown. Addressing these questions, here we analyze serpin genes identified in unicellular eukaryotes: the green alga Chlamydomonas reinhardtii, the dinoflagellate Alexandrium tamarense, and the human pathogens Entamoeba spp., Eimera tenella, Toxoplasma gondii, and Giardia lamblia. We compare these sequences to others, particularly those in the complete genome sequences of Archaea, where serpins were found in only 4 of 13 genera, and Bacteria, in only 9 of 56 genera. The serpins from unicellular organisms appear to be phylogenetically distinct from all of the clades of higher eukaryotic serpins. Most of the sequences from unicellular organisms have the characteristics of inhibitory serpins, and where multiple serpin genes are found in one genome, variability is displayed in the region of the reactive-center loop important for specificity. All the unicellular eukaryotic serpins have large hydrophobic or positively charged residues at the putative P1 position. In contrast, none of the prokaryotic serpins has a residue of these types at the predicted P1 position, but many have smaller, neutral residues. Serpin evolution is discussed.[Reviewing Editor: Dr. Peer Bork]  相似文献   
2.
Debate over the origin and evolution of vertebrates has occupied biologists and palaeontologists alike for centuries. This debate has been refined by molecular phylogenetics, which has resolved the place of vertebrates among their invertebrate chordate relatives, and that of chordates among their deuterostome relatives. The origin of vertebrates is characterized by wide‐ranging genomic, embryologic and phenotypic evolutionary change. Analyses based on living lineages suggest dramatic shifts in the tempo of evolutionary change at the origin of vertebrates and gnathostomes, coincident with whole‐genome duplication events. However, the enriched perspective provided by the fossil record demonstrates that these apparent bursts of anatomical evolution and taxic richness are an artefact of the extinction of phylogenetic intermediates whose fossil remains evidence the gradual assembly of crown gnathostome characters in particular. A more refined understanding of the timing, tempo and mode of early vertebrate evolution rests with: (1) better genome assemblies for living cyclostomes; (2) a better understanding of the anatomical characteristics of key fossil groups, especially the anaspids, thelodonts, galeaspids and pituriaspids; (3) tests of the monophyly of traditional groups; and (4) the application of divergence time methods that integrate not just molecular data from living species, but also morphological data and extinct species. The resulting framework will provide for rigorous tests of rates of character evolution and diversification, and of hypotheses of long‐term trends in ecological evolution that themselves suffer for lack of quantitative functional tests. The fossil record has been silent on the nature of the transition from jawless vertebrates to the jawed vertebrates that have dominated communities since the middle Palaeozoic. Elucidation of this most formative of episodes likely rests with the overhaul of early vertebrate systematics that we propose, but perhaps more fundamentally with fossil grades that await discovery.  相似文献   
3.
Stach, T. and Kaul, S. 2011. The postanal tail of the enteropneust Saccoglossus kowalevskii is a ciliary creeping organ without distinct similarities to the chordate tail. —Acta Zoologica (Stockholm) 92 : 150–160. The postanal tail of chordates is one of the key characters in chordate evolution and it has been suggested to be homologous to the postanal tail of harrimaniid enteropneusts. We present electron microscopic data of the ontogeny of the postanal tail in the enteropneust Saccoglossus kowalevskii. The postanal tail develops as a ventral posterior allometric outgrowth with a ventral extension of the telotroch. Transmission electron microscopy of serial sections reveals the epidermal organization of the postanal tail with the exception of short, bilaterally symmetric extensions of the paired metacoels. The epidermis cells are connected by apical junctions, rest basally on the extracellular matrix surrounding the mesoderm, and possess a basiepidermal nerve net. The ventral cells in the postanal tail are multiciliated and used for creeping. Dorsal cells are monociliated with numerous microvilli. Two types of glandular cells are present among the epidermis cells. The mesoderm cells contain myofilaments. We were unable to detect anatomical structures similar to the ones present in the postanal locomotory tail of chordates, such as notochord, neural tube, or endodermal strand. Thus, results of our anatomical study do not support homology of the postanal chordate tail and the postanal tail of harrimaniid enteropneusts.  相似文献   
4.
Obst, M., Nakano, H., Bourlat, S.J., Thorndyke, M.C., Telford, M.J., Nyengaard, J.R. and Funch, P. 2011. Spermatozoon ultrastructure of Xenoturbella bocki (Westblad 1949). —Acta Zoologica (Stockholm) 92 : 109–115. Here, we report on the sperm ultrastructure of Xenoturbella bocki (Westblad 1949), which we studied for the first time in detail using light, scanning and transmission electron microscopy. The mature spermatozoa are of the bilaterian primitive type, also called aquasperm and develop as uniflagellate sperm consisting of a round head with distinct mitochondria at the base and a 9+2 flagellum of approximately 42 μm in length. The acrosomal complex consists of a small, round electron translucent acrosomal vesicle and a subacrosomal base. There is no separate midpiece, and the mitochondria surround the proximal and distal centriole in the posterior part of the head. The primitive structure of the spermatozoa suggests that these fertilize the egg by free spawning, probably the ancestral mode of fertilization in early bilaterians. When compared to the spermatozoa of other metazoans, we find that the arrangement of organelles in the Xenoturbella sperm shows similarities to a wide range of protostome and deuterostome taxa and does not seem to indicate any particular phylogenetic relationship.  相似文献   
5.
6.
棘皮动物免疫学研究进展   总被引:11,自引:0,他引:11  
棘皮动物属原始后口动物、无脊椎动物的最高等类群,它处于由无脊椎动物向脊椎动物开始分支进化的阶段.研究棘皮动物的免疫功能和作用机理,对从比较免疫学角度探讨动物免疫系统进化过程有承前启后的重要意义.因此,有必要对棘皮动物的免疫学研究进展作一个较全面的综述,并理清未来的研究热点和方向.棘皮动物与其他无脊椎动物一样具有先天性免疫系统,但未发现脊椎动物所具有的获得性免疫.其免疫应答是由参与免疫反应的效应细胞——体腔细胞和多种体液免疫因子共同介导的.比较免疫学分析表明,棘皮动物存在脊椎动物补体系统的替代途径和凝集素途径,但未发现经典途径和明确的终端途径.棘皮动物先天性免疫系统存在数量庞大的基因家族.今后应加强对未知免疫相关基因、蛋白质、信号传导途径及效应分子的研究,回答免疫系统的起源、功能和进化等问题.  相似文献   
7.
Abstract: Vetulicolians are problematic Cambrian fossils with a debated phylogenetic history. Here, we describe two vetulicolian specimens from the Lower Cambrian Sirius Passet locality in North Greenland. One of the specimens is assigned to Ooedigera peeli gen. et sp. nov, whereas the other is retained under open nomenclature. The mode of tail flexibility has been debated in the literature, and we argue here that the tail normally flexed laterally to generate power strokes rather than dorsoventrally. The phylogenetic relationships of vetulicolians are discussed in the light of current knowledge of deuterostome phylogeny and morphology, and it is concluded that the best hypothesis on currently available evidence is that vetulicolians are a clade or paraphyletic assemblage of stem‐Deuterostomata. The presence of a voluminous, sediment‐filled anterior chamber suggests that the atrium may be a synapomorphy of deuterostomes.  相似文献   
8.
9.
10.
Abstract:  A new metazoan, Skeemella clavula gen. et sp. nov., is described from the Middle Cambrian Pierson Cove Formation of the Drum Mountains, Utah, USA. Skeemella is similar to vetulicolians, but differs from other examples of this group in the relative proportions of the anterior and posterior sections, the large number of divisions, and the elongate bifid termination. The posterior section is arthropodan in character. The similarity of this fossil to vetulicolians throws hypotheses of their deuterostome affinity into question and highlights their problematic status.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号