首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   13篇
  国内免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2010年   1篇
  2009年   1篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1979年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
1.
《Cell reports》2020,30(1):61-68.e4
  1. Download : Download high-res image (250KB)
  2. Download : Download full-size image
  相似文献   
2.
We have studied the expression of the fibronectin gene in 7 day-old chick embryo (stage 32) by in situ hybridization at the light and electron microscope levels, using a 397 base-pairs chicken cDNA, labeled by radioisotope or biotin-11dUTP. Cryostat sections of whole chick embryos displayed a selective label on the upper layer of the dermis, fibrous sclera and mesenchymal cells but not on cartilagenous sclera cells. These results show that the expression of the fibronectin gene varies in relation to the morphogenetic events. Hybridization at the ultrastructural level on thin sections of sclera embedded in Lowicryl K4M showed a selective labelling on various cell compartments. Biotin-11dUTP and radiolabeled probes were compared. The labeling was found precisely on the membrane of the rough endoplasmic reticulum and on the nuclear envelope. A few silver grains were located on the nucleus and in the perinucleolar region. This study shows that the postembedding in situ hybridization is a powerful procedure to study the expression of the extracellular protein genes and gives further information on the localization of mRNA.  相似文献   
3.
Vitiligo is a common depigmentation disorder characterized by the selective loss of melanocytes. In our daily clinic experience, we noticed that the skin tightness of hypopigmented lesions would be more evident in comparison to that of uninvolved perilesional skin in vitiligo patients. Therefore, we hypothesized that collagen homeostasis might be maintained in vitiligo lesions, irrespective of the substantial excessive oxidative stress that occurs in association with the disease. We found that the expression levels of collagen-related genes and anti-oxidative enzymes were upregulated in vitiligo-derived fibroblasts. Abundant collagenous fibers were observed in the papillary dermis of vitiligo lesions in comparison to uninvolved perilesional skin by electron microscopy. The production of matrix metalloproteinases that degraded collagen fibers was suppressed. The deposition of acrolein adduct protein, which is a product of oxidative stress, was significantly reduced in vitiligo dermis and fibroblasts. As part of the mechanism, we found upregulation of the NRF2 signaling pathway activity, which is an important defense system against oxidative stress. Taken together, we demonstrated that the anti-oxidative action and collagen production were upregulated and that the collagen degeneration was attenuated in vitiligo dermis. These new findings may provide important clues for the maintenance of antioxidant ability in vitiligo lesions.  相似文献   
4.
Human skin melanin pigmentation is regulated by systemic and local factors. According to the type of melanin produced by melanocytes, the transfer and degradation of melanosomes differ, thus accounting for most variations between ethnicities. We made the surprising observation that in a drastically changed environment, white and black phenotypes are reversible since Caucasian skin grafted onto nude mice can become black with all black phenotypic characteristics. Black xenografts differed essentially from other grafts by the levels of epidermal FGF‐2 and keratin 5. In vitro analysis confirmed that FGF‐2 directly regulates keratin 5. Interestingly, this phenomenon may be involved in human pathology. Keratin 5 mutations in Dowling–Degos Disease (DDD) have already been associated with the pheomelanosome–eumelanosome transition. In a DDD patient, keratin 5 was expressed in the basal and spinous layers, as observed in black xenografts. Furthermore, in a common age‐related hyperpigmentation disorder like senile lentigo (SL), keratin 5 distribution is also altered. In conclusion, modulation of keratin 5 expression and distribution either due to mutations or factors may account for the development of pigmentary disorders.  相似文献   
5.
Hair follicle morphogenesis, a complex process requiring interaction between epithelia-derived keratinocytes and the underlying mesenchyme, is an attractive model system to study organ development and tissue-specific signaling. Although hair follicle development is genetically tractable, fast and reproducible analysis of factors essential for this process remains a challenge. Here we describe a procedure to generate targeted overexpression or shRNA-mediated knockdown of factors using lentivirus in a tissue-specific manner. Using a modified version of a hair regeneration model 5, 6, 11, we can achieve robust gain- or loss-of-function analysis in primary mouse keratinocytes or dermal cells to facilitate study of epithelial-mesenchymal signaling pathways that lead to hair follicle morphogenesis. We describe how to isolate fresh primary mouse keratinocytes and dermal cells, which contain dermal papilla cells and their precursors, deliver lentivirus containing either shRNA or cDNA to one of the cell populations, and combine the cells to generate fully formed hair follicles on the backs of nude mice. This approach allows analysis of tissue-specific factors required to generate hair follicles within three weeks and provides a fast and convenient companion to existing genetic models.  相似文献   
6.
During growth and development, the skin expands to cover the growing skeleton and soft tissues by constantly responding to the intrinsic forces of underlying skeletal growth as well as to the extrinsic mechanical forces from body movements and external supports. Mechanical forces can be perceived by two types of skin receptors: (1) cellular mechanoreceptors/mechanosensors, such as the cytoskeleton, cell adhesion molecules and mechanosensitive (MS) ion channels, and (2) sensory nerve fibres that produce the somatic sensation of mechanical force. Skin disorders in which there is an abnormality of collagen [e.g. Ehlers–Danlos syndrome (EDS)] or elastic (e.g. cutis laxa) fibres or a malfunction of cutaneous nerve fibres (e.g. neurofibroma, leprosy and diabetes mellitus) are also characterized to some extent by deficiencies in mechanobiological processes. Recent studies have shown that mechanotransduction is crucial for skin development, especially hemidesmosome maturation, which implies that the pathogenesis of skin disorders such as bullous pemphigoid is related to skin mechanobiology. Similarly, autoimmune diseases, including scleroderma and mixed connective tissue disease, and pathological scarring in the form of keloids and hypertrophic scars would seem to be clearly associated with the mechanobiological dysfunction of the skin. Finally, skin ageing can also be considered as a degenerative process associated with mechanobiological dysfunction. Clinically, a therapeutic strategy involving mechanoreceptors or MS nociceptor inhibition or acceleration together with a reduction or augmentation in the relevant mechanical forces is likely to be successful. The development of novel approaches such as these will allow the treatment of a broad range of cutaneous diseases.  相似文献   
7.
Embryonic dermal fibroblasts in the skin have the exceptional ability to initiate hair follicle morphogenesis and contribute to scarless wound healing. Activation of the Wnt signaling pathway is critical for dermal fibroblast fate selection and hair follicle induction. In humans, mutations in Wnt pathway components and target genes lead to congenital focal dermal hypoplasias with diminished hair. The gene expression signature of embryonic dermal fibroblasts during differentiation and its dependence on Wnt signaling is unknown. Here we applied Shannon entropy analysis to identify the gene expression signature of mouse embryonic dermal fibroblasts. We used available human DNase‐seq and histone modification ChiP‐seq data on various cell‐types to demonstrate that genes in the fibroblast cell identity signature can be epigenetically repressed in other cell‐types. We found a subset of the signature genes whose expression is dependent on Wnt/β‐catenin activity in vivo. With our approach, we have defined and validated a statistically derived gene expression signature that may mediate dermal fibroblast identity and function in development and disease. genesis 54:415–430, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
8.
9.
We quantified placoid scale morphology and flexibility in the shortfin mako Isurus oxyrinchus and the blacktip shark Carcharhinus limbatus. The shortfin mako shark has shorter scales than the blacktip shark. The majority of the shortfin mako shark scales have three longitudinal riblets with narrow spacing and shallow grooves. In comparison, the blacktip shark scales have five to seven longitudinal riblets with wider spacing and deeper grooves. Manual manipulation of the scales at 16 regions on the body and fins revealed a range of scale flexibility, from regions of nonerectable scales such as on the leading edge of the fins to highly erectable scales along the flank of the shortfin mako shark body. The flank scales of the shortfin mako shark can be erected to a greater angle than the flank scales of the blacktip shark. The shortfin mako shark has a region of highly flexible scales on the lateral flank that can be erected to at least 50°. The scales of the two species are anchored in the stratum laxum of the dermis. The attachment fibers of the scales in both species appear to be almost exclusively collagen, with elastin fibers visible in the stratum laxum of both species. The most erectable scales of the shortfin mako shark have long crowns and relatively short bases that are wider than long. The combination of a long crown length to short base length facilitates pivoting of the scales. Erection of flank scales and resulting drag reduction is hypothesized to be passively driven by localized flow patterns over the skin. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
10.
Murine dermis contains functionally and spatially distinct fibroblast lineages that cease to proliferate in early postnatal life. Here, we propose a model in which a negative feedback loop between extracellular matrix (ECM) deposition and fibroblast proliferation determines dermal architecture. Virtual‐tissue simulations of our model faithfully recapitulate dermal maturation, predicting a loss of spatial segregation of fibroblast lineages and dictating that fibroblast migration is only required for wound healing. To test this, we performed in vivo live imaging of dermal fibroblasts, which revealed that homeostatic tissue architecture is achieved without active cell migration. In contrast, both fibroblast proliferation and migration are key determinants of tissue repair following wounding. The results show that tissue‐scale coordination is driven by the interdependence of cell proliferation and ECM deposition, paving the way for identifying new therapeutic strategies to enhance skin regeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号