首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   7篇
  国内免费   4篇
  2023年   3篇
  2022年   1篇
  2021年   10篇
  2020年   2篇
  2019年   7篇
  2018年   5篇
  2017年   4篇
  2016年   7篇
  2015年   2篇
  2014年   6篇
  2013年   2篇
  2012年   7篇
  2011年   4篇
  2010年   2篇
  2009年   6篇
  2008年   10篇
  2007年   7篇
  2006年   5篇
  2005年   1篇
  2004年   9篇
  2003年   2篇
  2002年   5篇
  2001年   4篇
  2000年   6篇
  1999年   6篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   6篇
  1993年   2篇
  1992年   2篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
  1984年   4篇
  1981年   5篇
  1980年   1篇
  1977年   1篇
  1972年   2篇
排序方式: 共有167条查询结果,搜索用时 15 毫秒
1.
Acidic inorganic phosphate (Pi) pool (pH around 6) was detected besides the cytoplasmic pool in intact cells of Chlorella vulgaris 11h by 31P-in vivo nuclear magnetic resonance (NMR) spectroscopy. It was characterized as acidic compartments (vacuoles) in combination with the cytochemical technique; staining the cells with neutral red and chloroquine which are known as basic reagents specifically accumulated in acidic compartments. Under various conditions, the results obtained with the cytochemical methods were well correlated with those obtained from in vivo NMR spectra; the vacuoles were well developed in the cells at the stationary growth phase where the acidic Pi signal was detected. In contrast, cells at the logarithmic phase in which no acidic Pi signal was detected contained only smaller vesicles that accumulated these basic reagents. No acidic compartment was detected by both cytochemical technique and 31P-NMR spectroscopy when the cells were treated with NH4OH. The vacuolar pH was lowered by the anaerobic treatment of the cells in the presence of glucose, while it was not affected by the external pH during the preincubation ranging from 3 to 10. Possible vacuolar functions in unicellular algae especially with respect to intracellular pH regulation are discussed.Non-standard abbreviations EDTA ethylenediaminetetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MDP methylene diphosphonic acid - NMR nuelear magnetic resonance - PCA perchloric acid - PCV packed cell volume - Pi inorganic phosphate - Pic sytoplasmic inorganic phosphate - Piv vacuolar inorganic phosphate - ppm parts per million - SP sugar phosphates - TCA trichloroacetic acid  相似文献   
2.
Abstract: Tetanus toxin (TeNT) is one of the clostridial neurotoxins that act intracellularly to block neurotransmitter release. However, neither the route of entry nor the mechanism by which these toxins gain access to the neuronal cytoplasm has been established definitively. In murine spinal cord cell cultures, release of the neurotransmitter glycine is particularly sensitive to blockade by TeNT. To test whether TeNT enters neurons through acidic endosomes or is routed through the Golgi apparatus, toxin action on potassium-evoked glycine release was assayed in cultures pretreated with bafilomycin A1 (baf A1) or brefeldin A (BFA). baf A1, which inhibits the vacuolar-type H+-ATPase responsible for endosome acidification, diminishes the staining of acidic compartments and interferes with the action of TeNT in a dose-dependent manner. TeNT blockade of evoked glycine release is inhibited by 50 and 90% in cultures pretreated with 50 and 100 n M baf A1, respectively, compared with cultures treated with the inhibitor alone. The effects of baf A1 are fully reversible. In contrast, BFA, which disrupts Golgi function, has no effect on TeNT action. These findings provide evidence that TeNT enters the neuronal cytoplasm through baf A1-sensitive acidic compartments and that TeNT is not trafficked through the Golgi apparatus before its translocation into the neuronal cytosol.  相似文献   
3.
The study presents an application of the theory of homeomorphic transformations of topological manifolds and the operation of the connected sum of manifolds for topological analysis of membrane transformations during the fusion process between cellular and subcellular compartments. The biological cell and the subcellular structures in the form of vesicles are modelled by an arrangement of two concentric spheres corresponding to the inner and outer layer of the membrane bounding the vesicles. The analysis shows eight succeeding topological stages of membrane transformations during the fusion process and these stages are characterized. It is concluded that there is a vectorial translocation of lipid molecules from the outer layers of the membranes before the fusion process to the internal layer of the membrane bounding the vesicle after the fusion process and there is no lipid translocation in the reverse direction.  相似文献   
4.
The application of the theory of homeomorphic transformations of topological manifolds and the operation of the connected sum of manifolds for a formation of a topological model of membrane transformations during the division process of cellular and subcellular compartments, has been shown. The biological cell and the subcellular structures in the form of vesicles are modelled by an arrangement of two concentric spheres corresponding to the inner and outer layer of the membrane bounding the vesicle. The analysis shows eight succeeding topological stages of membrane transformations during the division process and these stages are characterised. It is concluded that there is a vectorial translocation of lipid molecules from the inner layer of the membrane bounding the vesicle before the division process to the outer layer of the membranes after the division process and there is no lipid translocation from the outer layer to the inner layers during the division process.  相似文献   
5.
Tian Zhang 《Autophagy》2016,12(8):1411-1412
In eukaryotic cells, the macroautophagy pathway has been implicated in the degradation of long-lived proteins and damaged organelles. Although it has been demonstrated that macroautophagy can selectively degrade specific targets, its contribution to the basal turnover of cellular proteins had previously not been quantified on proteome-wide scales. In a recent study, we utilized dynamic proteomics to provide a global comparison of protein half-lives between wild-type and autophagy-deficient cells. Our results indicated that in quiescent fibroblasts, macroautophagy contributes to the basal turnover of a substantial fraction of the proteome. However, the contribution of macroautophagy to constitutive protein turnover is variable within the proteome. The methodology outlined in the study provides a global strategy for quantifying the selectivity of basal macroautophagy.  相似文献   
6.
Membrane‐less organelles, because of their capacity to dynamically, selectively and reversibly concentrate molecules, are very well adapted for local information processing and rapid response to environmental fluctuations. These features are particularly important in the context of neuronal cells, where synapse‐specific activation, or localized extracellular cues, induce signaling events restricted to specialized axonal or dendritic subcompartments. Neuronal ribonucleoprotein (RNP) particles, or granules, are nonmembrane bound macromolecular condensates that concentrate specific sets of mRNAs and regulatory proteins, promoting their long‐distance transport to axons or dendrites. Neuronal RNP granules also have a dual function in regulating the translation of associated mRNAs: while preventing mRNA translation at rest, they fuel local protein synthesis upon activation. As revealed by recent work, rapid and reversible switches between these two functional modes are triggered by modifications of the networks of interactions underlying RNP granule assembly. Such flexible properties also come with a cost, as neuronal RNP granules are prone to transition into pathological aggregates in response to mutations, aging, or cellular stresses, further emphasizing the need to better understand the mechanistic principles governing their dynamic assembly and regulation in living systems.  相似文献   
7.
Morphogenesis of the Drosophila tracheal system relies on different signalling pathways that have distinct roles in specifying both the migration of the tracheal cells and the particular morphological features of the primary branches. The current view is that the tracheal cells are initially specified as an equivalent group of cells whose diversification depends on signals from the surrounding cells. In this work, we show that the tracheal primordia are already specified as distinct dorsal and ventral cell populations. This subdivision depends on the activity of the spalt (sal) gene and occurs prior to the activity of the signalling pathways that dictate the development of the primary branches. Finally, we show that the specification of these two distinct cell populations, which are not defined by cell lineage, are critical for proper tracheal patterning. These results indicate that tracheal patterning depends not only on signalling from surrounding cells but also in the different response of the tracheal cells depending on their allocation to the dorsal or ventral domains.  相似文献   
8.
9.
10.
A centrifugal dehydration force (CDF) method to quantify changes in tissue hydration in fresh and in post-mortem muscular fish tail tissue is presented. The data obtained were used to assess fluid flow rate from tissues and the size of hydration compartments expressed in g water/g dry mass (DM). Curve fit analysis demonstrated that muscle tissue has three detectable water compartments. Application of the method to the fresh fish indicated the presence of a large non-bulk water compartment (3.14 g water/g DM) with a much smaller (0.11 g water/g DM) inner non-bulk water sub-compartment in addition to a comparatively small bulk water compartment (0.99 g water/g DM). At 10 min and at 4h post-mortem, no significant change in size or flow rate of the water compartments was observed. At 24h post-mortem the muscular fish tissue, stored in water, swelled with statistically significant increase in total water and in the bulk water compartment but no significant change in the size of the non-bulk water compartments. The water flow rate from the non-bulk water compartment was, however, increased significantly in the 24h dead tissue. This simple CDF method has application for quantization of bulk and non-bulk water compartments in other biological and non-biological systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号