首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
  2023年   2篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1991年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
The deformed (Dfd) and ultrabithorax (Ubx) homeoproteins regulate developmental gene expression in Drosophila melanogaster by binding to specific DNA sequences within its genome. DNA binding is largely accomplished via a highly conserved helix-turn-helix DNA-binding domain that is known as a homeodomain (HD). Despite nearly identical DNA recognition helices and similar target DNA sequence preferences, the in vivo functions of the two proteins are quite different. We have previously revealed differences between the two HDs in their interactions with DNA. In an effort to define the individual roles of the HD N-terminal arm and recognition helix in sequence-specific binding, we have characterized the structural details of two Dfd/Ubx chimeric HDs in complex with both the Dfd and Ubx-optimal-binding site sequences. We utilized hydroxyl radical cleavage of DNA to assess the positioning of the proteins on the binding sites. The effects of missing nucleosides and purine methylation on HD binding were also analyzed. Our results show that both the Dfd and Ubx HDs have similar DNA-binding modes when in complex with the Ubx-optimal site. There are subtle but reproducible differences in these modes that are completely interchanged when the Dfd N-terminal arm is replaced with the corresponding region of the Ubx HD. In contrast, we showed previously that the Dfd-optimal site sequence elicits a very different binding mode for the Ubx HD, while the Dfd HD maintains a mode similar to that elicited by the Ubx-optimal site. Our current methylation interference studies suggest that this alternate binding mode involves interaction of the Ubx N-terminal arm with the minor groove on the opposite face of DNA relative to the major groove that is occupied by the recognition helix. As judged by hydroxyl radical footprinting and the missing nucleoside experiment, it appears that interaction of the Ubx recognition helix with the DNA major groove is reduced. Replacing the Dfd N-terminal arm with that of Ubx does not elicit a complete interchange of the DNA-binding mode. Although the position of the chimera relative to DNA, as judged by hydroxyl radical footprinting, is similar to that of the Dfd HD, the missing nucleoside and methylation interference patterns resemble those of the Ubx HD. Repositioning of amino acid side-chains without wholesale structural alteration in the polypeptide appears to occur as a function of N-terminal arm identity and DNA-binding site sequence. Complete interchange of binding modes was achieved only by replacement of the Dfd N-terminal arm and the recognition helix plus 13 carboxyl-terminal residues with the corresponding residues of Ubx. The position of the N-terminal arm in the DNA minor groove appears to differ in a manner that depends on the two base-pair differences between the Dfd and Ubx-optimal-binding sites. Thus, N-terminal arm position dictates the binding mode and the interaction of the recognition helix with nucleosides in the major groove.  相似文献   
2.
【目的】对蜜蜂的6种病毒:以色列急性麻痹病毒(Israeli acute paralysis virus,IAPV)、残翅病毒(Deformed wing virus,DWV)、囊状幼虫病病毒(Sacbrood virus,SBV)、急性蜜蜂麻痹病毒(Acute bee paralysis virus,ABPV)、黑蜂王台病毒(Black queen cell virus,BQCV)、慢性麻痹病毒(Chronic bee paralysis virus,CBPV)在北京地区的流行情况进行调查,以期为该地区蜜蜂病毒病的防控提供一定的理论依据。【方法】应用多重RT-PCR法确定上述6种病毒在该地区的感染情况,并通过序列分析确定特异性。【结果】在所有检测样本中均未检测到急性麻痹病病毒和慢性麻痹病病毒,感染率最高的是以色列急性麻痹病毒,其次是残翅病毒。检测的样本普遍存在混合感染。【结论】以色列急性麻痹病毒、残翅病毒、囊状幼虫病病毒、黑蜂王台病毒4种病毒可能在北京地区广泛分布。  相似文献   
3.
Ilia V Baskakov 《朊病毒》2014,8(2):169-172
In several recent studies transmissible prion disease was induced in animals by inoculation with recombinant prion protein amyloid fibrils produced in vitro. Serial transmission of amyloid fibrils gave rise to a new class of prion strains of synthetic origin. Gradual transformation of disease phenotypes and PrPSc properties was observed during serial transmission of synthetic prions, a process that resembled the phenomenon of prion strain adaptation. The current article discusses the remarkable parallels between phenomena of prion strain adaptation that accompanies cross-species transmission and the evolution of synthetic prions occurring within the same host. Two alternative mechanisms underlying prion strain adaptation and synthetic strain evolution are discussed. The current article highlights the complexity of the prion transmission barrier and strain adaptation and proposes that the phenomenon of prion adaptation is more common than previously thought.  相似文献   
4.
Cr6+污染对水鳖超微结构的影响主要表现在:胞间连丝呈现不同程度的断裂;细胞核出现各种各样的变形;叶绿体膨胀,其基粒解体。细胞损伤程度与Cr6+培养浓度呈正相关。Cr6+对水鳖、菱、莼菜和黑藻这几种水生高等植物的细胞膜影响主要表现在:质壁发生分离,质壁之间有黑色颗粒存在。在做生理验证时发现处理组的膜脂过氧化产物丙二醛(MDA)和超氧阴离子(O2)均高于对照。  相似文献   
5.
Summary Three auxin-type herbicides, namely 2.4-dichlorophenoxyacetic acid (2,4-D), (4-chlorophenoxy)acetic acid 2-(dimethylamino)ethyl ester (centrophenoxine), and quinolinecarboxylic acid (quinclorac) induced direct somatic embryogenesis in seed-derived zygotic embryo explants of sweet pepper (Capsicum annuum L.) when added to Murashige and Skoog medium with 200 mM sucrose. Optimum concentrations for embryogenesis induction were 0.40–0.45 mM and 1.15–1.30 μM for 2.4-D and centrophenoxine, respectively (in the presence of 5.0 gl−1 activated charcoal), or 40 μM for quinclorac (in medium without activated charcoal). Somatic embryos emerged from the epidermal and subepidermal tissues and developed on the surface of the explant. Centrophenoxine- or 2.4-D-mediated embryogenesis was accomplished from 95% of the explants in about 3 wk and, on average, six embryos were formed per explant. Induction efficieney was lower for quinelorac. Centrophenoxine-mediated embryognesis was possible in 10 pepper cultivars, the extent of the reponse-being genotype-dependent. embryos detached from the explant and transplanted onto a growth regulator-free medium germinated; however, the recovered regenerants were without a shoot, and some of them bore a single deformed cotyledon while others had no cotyledons. Regenerants lacking a shoot were generated irrespective of the auxin type applied and across all responsive genotypes investigated. Absence of a shoot, resulting from a failure in the establishment of a normal functioning apical shoot meristem, was the principal developmental disorder that precluded regeneration of normal plants via direct somatic embryogenesis. Since stem cells of the shoot meristem become established in globular and heart-stage embryos, we deduce that the absence of a shoot in germinating embryos could orginate from deviant differentiation at these early stages of embryogeny.  相似文献   
6.
This study focused on the spring-fed upper reaches of the economically important Great Fish River with the aim of determining if diatoms could be used for biomonitoring in semi-arid conditions in southern Africa. Five sites were monitored monthly from 2010 to 2012. Of the 269 diatom taxa belonging to 51 genera identified, the dominant taxa were mostly those considered to be pollution-tolerant: Amphora pediculus, Craticula buderi, Fragilaria biceps, Nitzschia frustulum, Nitzschia paleacea, Planothidium lanceolatum and Rhopalodia gibba. A number of diatom-based numerical indices were used to infer water quality, including the generic diatom index, the specific pollution sensitivity index, the biological diatom index, and percentage pollution-tolerant valves, which forms part of the UK trophic diatom index. All index scores showed the Great Fish River to be impacted, and showed significant correlations of diatom species abundance with pH, NO3-N, electrical conductivity, NH4-N and CaCO3. Analysis revealed EC and NO3-N as the main environmental drivers affecting diatom community composition, followed by pH and PO4-P. The percentage of diatom deformities at all sites was high, at 3.5%. Diatom indices showed the river to be impacted by decades of agricultural activity, which was confirmed by chemical water analysis. Thus diatom indices can be used for biomonitoring in semi-arid areas.  相似文献   
7.
The honey bee Apis mellifera L. is a crucial insect in the agricultural industry and natural ecosystem by being a major pollinator. Nevertheless, honey bee population has been recently facing a decline. Among the several factors responsible for this decline, deformed wing virus (DWV) is considered a primary cause that negatively affects honey bee health. DWV is a cosmopolitan honey bee pathogen and causes morphological disadvantages in individual honey bees and colony collapse. Regarding the horizontal transmission of DWV, in addition to Varroa destructor, a well-known major vector of DWV, flowers have recently been implied as a transmission route. Therefore, in this study, we detected DWV from various substances, including flowers, honey bee feces, pupa, larva, nurse bee, surface of nurse bee, pollen collected by forager bee, and forager bee samples in four strawberry greenhouses, which could suggest the potential for the horizontal transmission of DWV in the semi-field condition. We also detected DWV in pollen collected by DWV-negative forager bees, implying that flowers can serve as a potential source of virus infection. These findings suggest that the surrounding environment such as shared floral sources affects the spread of DWV.  相似文献   
8.
Novel transmission routes can directly impact the evolutionary ecology of infectious diseases, with potentially dramatic effect on host populations and knock‐on effects on the wider host community. The invasion of Varroa destructor, an ectoparasitic viral vector in Western honeybees, provides a unique opportunity to examine how a novel vector affects disease epidemiology in a host community. This specialist honeybee mite vectors deformed wing virus (DWV), an important re‐emerging honeybee pathogen that also infects wild bumblebees. Comparing island honeybee and wild bumblebee populations with and without V. destructor, we show that V. destructor drives DWV prevalence and titre in honeybees and sympatric bumblebees. Viral genotypes are shared across hosts, with the potentially more virulent DWV‐B overtaking DWV‐A in prevalence in a current epidemic. This demonstrates disease emergence across a host community driven by the acquisition of a specialist novel transmission route in one host, with dramatic community level knock‐on effects.  相似文献   
9.
Signal transduction pathways and their coordination are critically important for proper functioning of animal immune systems. Our knowledge of the constituents of the intracellular signaling network in insects mainly comes from genetic analyses in Drosophila melanogaster. To facilitate future studies of similar systems in the tobacco hornworm and other lepidopteran insects, we have identified and examined the homologous genes in the genome of Manduca sexta. Based on 1:1 orthologous relationships in most cases, we hypothesize that the Toll, Imd, MAPK-JNK-p38 and JAK-STAT pathways are intact and operative in this species, as are most of the regulatory mechanisms. Similarly, cellular processes such as autophagy, apoptosis and RNA interference probably function in similar ways, because their mediators and modulators are mostly conserved in this lepidopteran species. We have annotated a total of 186 genes encoding 199 proteins, studied their domain structures and evolution, and examined their mRNA levels in tissues at different life stages. Such information provides a genomic perspective of the intricate signaling system in a non-drosophiline insect.  相似文献   
10.
Recent studies have shown that F‐box proteins constitute a large family in eukaryotes, and play pivotal roles in regulating various developmental processes in plants. However, their functions in monocots are still obscure. In this study, we characterized a recessive mutant dwarf and deformed flower 1‐1 (ddf1‐1) in Oryza sativa (rice). The mutant is abnormal in both vegetative and reproductive development, with significant size reduction in all organs except the spikelet. DDF1 controls organ size by regulating both cell division and cell expansion. In the ddf1‐1 spikelet, the specification of floral organs in whorls 2 and 3 is altered, with most lodicules and stamens being transformed into glume‐like organs and pistil‐like organs, respectively, but the specification of lemma/palea and pistil in whorls 1 and 4 is not affected. DDF1 encodes an F‐box protein anchored in the nucleolus, and is expressed in almost all vegetative and reproductive tissues. Consistent with the mutant floral phenotype, DDF1 positively regulates B‐class genes OsMADS4 and OsMADS16, and negatively regulates pistil specification gene DL. In addition, DDF1 also negatively regulates the Arabidopsis LFY ortholog APO2, implying a functional connection between DDF1 and APO2. Collectively, these results revealed that DDF1, as a newly identified F‐box gene, is a crucial genetic factor with pleiotropic functions for both vegetative growth and floral organ specification in rice. These findings provide additional insights into the molecular mechanism controlling monocot vegetative and reproductive development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号