首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2000年   1篇
  1997年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
Friedreich's ataxia (FRDA), the most common inherited ataxia, is a neurodegenerative disease caused by a reduction in the levels of the mitochondrial protein frataxin, the function of which remains a controversial matter. Several therapeutic approaches are being developed to increase frataxin expression and reduce the intramitochondrial iron aggregates and oxidative damage found in this disease. In this study, we tested separately the response of a Drosophila RNAi model of FRDA ( Llorens et al., 2007) to treatment with the iron chelator deferiprone (DFP) and the antioxidant idebenone (IDE), which are both in clinical trials. The FRDA flies have a shortened life span and impaired motor coordination, and these phenotypes are more pronounced in oxidative stress conditions. In addition, under hyperoxia, the activity of the mitochondrial enzyme aconitase is strongly reduced in the FRDA flies. This study reports that DFP and IDE improve the life span and motor ability of frataxin-depleted flies. We show that DFP eliminates the excess of labile iron in the mitochondria and thus prevents the toxicity induced by iron accumulation. IDE treatment rescues aconitase activity in hyperoxic conditions. These results validate the use of our Drosophila model of FRDA to screen for therapeutic molecules to treat this disease.  相似文献   
2.
Alzheimer's disease (AD) is a common neurodegenerative disorder, but the initiating molecular processes contributing to neuronal death are not well understood. AD is associated with elevated soluble and aggregated forms of amyloid beta (Abeta) and with oxidative stress. Furthermore, there is increasing evidence for a detrimental role of iron in the pathogenic process. In this context, iron chelation by compounds such as 3-hydroxypyridin-4-one, deferiprone (Ferriprox) may have potential neuroprotective effects. We have evaluated the possible neuroprotective actions of deferiprone against a range of AD-relevant insults including ferric iron, H(2)O(2) and Abeta in primary mouse cortical neurones. We have investigated the possible neuroprotective actions of deferiprone (1, 3, 10, 30 or 100 microM) in primary neuronal cultures following exposure to ferric iron [ferric nitrilotriacetate (FeNTA); 3 and 10 microM], H(2)O(2) (100 microM) or Abeta1-40 (3, 10 and 20 microM). Cultures were treated with deferiprone or vehicle either immediately or up to 6 h after the insult in a 24-well plate format. In order to elucidate a possible neuroprotective action of deferiprone against Parkinson's disease relevant insults another group of experiments were performed in the human neuroblastoma catecholaminergic SHSY-5Y cell line. SHSY-5Y cells were treated with MPP(+) iodide, the active metabolite of the dopaminergic neurotoxin MPTP and the neuroprotective actions of deferiprone evaluated. Cytotoxicity was assessed at 24 h by lactate dehydrogenase release, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide turnover (FeNTA and hydrogen peroxide) and morphometric analysis of cell viability by Hoechst 33324/propidium iodide (FeNTA, Abeta and MPP(+)) or 6-carboxyfluorescein diacetate and annexin V-Cy3 (Abeta). The present study demonstrates that deferiprone protects against FeNTA, hydrogen peroxide, MPP(+) and Abeta1-40-induced neuronal cell death in vitro, which is consistent with previous in vitro and in vivo studies that have demonstrated similar protection with other iron chelators.  相似文献   
3.
To prevent side effects of excessive accumulation of iron in the body, chelation therapy is recommended in transfusion-dependent patients. The reaction between deferiprone and iron to form a complex red substance can be described as 3 molecules of the chelator, deferiprone, reacting with a molecule of iron. However, the actual mechanism of the deferiprone-iron binding reaction is not well understood. A quantum chemical analysis of the deferiprone-iron binding reaction was performed, focusing on the reaction between 1 molecule of deferiprone and I molecule of iron. The two main alternative pathways for the deferiprone-iron binding reaction were shown to be C-C cleavage and C-O cleavage. The required energy for complex formation in C-C cleavage was less than for C-O cleavage. The total energy requirement for C-C cleavage was negative, implying that this reaction can occur without any external energy source. The resulting complex fits the reported tertiary structure model for the deferiprone-iron complex.  相似文献   
4.
5.
Optimized conditions, validation and practical applications of a new, rapid and specific fluorometric method for the determination of deferiprone (DFP) in urine and serum samples are reported. The proposed method, which is based on the formation of a luminescent complex with Tb3+ ion, is evaluated in terms of linearity, accuracy, precision, stability, recovery and limits of detection (LOD) and quantification (LOQ). Under optimum conditions (pH 7.5, [Tb3+] = 3 × 10–4 mol/L, temperature 0 °C and excitation wavelength 295 nm), the relative intensities at 545 nm are linear, with the concentration of DFP in the range 0.072–13 mmol/L for urine and serum samples. The LOD and LOQ, respectively, are calculated to be 0.014 and 0.045 mmol/L for urine and 0.022 and 0.072 mmol/L for serum samples. The intra‐day and inter‐day values for the precision and accuracy of the proposed method are all < 5%, and the recovery of the method is in the range 97.1–103.8%. The method was applied to human urine and serum samples collected from patients receiving DFP. The results indicated that the method can be successfully applied to the determination of DFP in human urine and serum samples collected for clinical or biopharmaceutical investigations in which simple, rapid, cheap and specific determination methods facilitate and speed up the analytical procedure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
6.
The hypothesis that two known chelators deferiprone (1,2-dimethy1-3-hydroxypyrid-4-one, L1) and desferrioxamine (DFO) might be more efficient as combined treatment than as monotherapies in removing thallium from the body was tested in rats. Six-week-old male Wistar rats received chelators: L1 (p.o.), DFO (i.p.) or L1 + DFO as 110 or 220 mg/kg dose half an hour after a single i.p. administration of 8 mg Tl/kg body weight in the form of chloride. Serum thallium concentration, urinary thallium and iron excretions were determined by graphite furnace atomic absorption spectrometry. Both chelators were effective only at the higher dose level, while DFO was more effective than L1 in enhancing urinary thallium excretion, L1 was more effective than DFO in enhancing urinary iron excretion. In the combined treatment group, L1 did not increase the DFO effect on thallium and DFO did not increase the effect of L1 on iron elimination. Our results support the usefulness of this animal model for preliminary in vivo testing of thallium chelators. Urinary values were more useful because of the high variability of serum results. Result of combined chelators treatment should be confirmed in a different experimental model before extrapolation to other systems.  相似文献   
7.
8.
The use of the iron chelator deferiprone (L, CP20, 1,2-dimethyl-3-hydroxypyrid-4-one) for the treatment of diseases of iron overload and other disorders is problematic and requires further evaluation. In this study the efficacy, toxicity and mechanism of action of orally administered L were investigated in the guinea pig using the carbonyl iron model of iron overload. In an acute trial, depletion of liver non-heme iron in drug-treated guinea pigs (normal iron status) was maximal (approximately 50% of control) after a single oral dose of L1 of 200 mg kg, suggesting a limited chelatable pool in normal tissue. There was no apparent toxicity up to 600 mg kg. In each of two sub-acute trials, normal and iron-loaded animals were fed L (300 mg kg day) or placebo for six days. Final mortalities were 12/20 (L) and 0/20 (placebo). Symptoms included weakness, weight loss and eye discharge. Iron-loaded as well as normal guinea pigs were affected, indicating that at this drug level iron loading was not protective. In a chronic trial guinea pigs received L (50 mg kg day) or placebo for six days per week over eight months. Liver non-heme iron was reduced in animals iron-loaded prior to the trial. The increase in a wave latency (electroretinogram), the foci of hepatic, myocardial and musculo-skeletal necrosis, and the decrease in white blood cells in the drug-treated/normal diet group even at the low dose of 50 mg kg day suggests that L may be unsuitable for the treatment of diseases which do not involve Fe overload. However, the low level of pathology in animals treated with iron prior to the trial suggests that even a small degree of iron overload (two-fold after eight months) is protective at this drug level. We conclude that the relationship between drug dose and iron status is critical in avoiding toxicity and must be monitored rigorously as cellular iron is depleted.  相似文献   
9.
The interaction of deferiprone (1,2-dimethyl-3-hydroxy-pyrid-4-one) L1, the first clinically available oral iron chelator, with the tetrameric allosteric protein hemoglobin from human red blood cells has been investigated spectrofluorometrically and by circular dichroism spectroscopy. The interaction is hydrogenbond like electrostatic in nature, the binding constant being 4.54 × 103 M-1 in 0.15 M NaCl. Circular dichroism studies indicate a conformational change of hemoglobin in presence of deferiprone, helicity of hemoglobin being reduced in presence of increasing concentration of the drug L1.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号