首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   13篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   9篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1989年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
1.
A question that is central to understanding the mechanisms of aging and cellular deterioration is whether enzymes involved in recognition and metabolism of spontaneously damaged proteins are themselves damaged, either becoming substrates for their own activity; or being unable to act upon themselves, initiating cascades of cellular damage. We show here byin vitro experiments that protein (d-aspartyl/l-isoaspartyl) carboxyl methyltransferase (PCM) from bovine erythrocytes does methylate age-dependent amino acid damage in its own sequence. The subpopulation that is methylated, termed thePCM fraction, appears to be formed through age-dependent deamidation of an asparaginyl site to either anl-isoaspartyl ord-aspartyl site because (a) the stoichiometry of automethylation of purified PCM is less than 1%, a value typical of the substoichiometric methylation of many other aged protein substrates, (b)PCM is slightly more acidic than the bulk of PCM, and (c) the methyl esterified site inPCM has the characteristic base-lability of this type of methyl ester. Also, the methyl group is not incorporated into the enzyme as an active site intermediate because the incorporated methyl group is not chased onto substrate protein. The effect of enzyme dilution on the rate of the automethylation reaction is consistent with methylation occurring between protein molecules, showing that the pool of PCM is autocatalytic even though individual molecules may not be. The automethylation and possible self-repair of the PCM pool has implications for maintaining thein vivo efficiency of methylation-dependent protein repair.  相似文献   
2.
We have determined the major sites responsible for isoaspartate formation during in vitro aging of bovine brain calmodulin under mild conditions. Protein L-isoaspartyl methyltransferase (EC 2.1.1.77) was used to quantify isoaspartate by the transfer of methyl-3H from S-adenosyl-L-[methyl-3H]methionine to the isoaspartyl (alpha-carboxyl) side chain. More than 1.2 mol of methyl-acceptor sites per mol of calmodulin accumulated during a 2-week incubation without calcium at pH 7.4, 37 degrees C. Analysis of proteolytic peptides of aged calmodulin revealed that > 95% of the methylation capacity is restricted to residues in the four calcium-binding domains, which are predicted to be highly flexible in the absence of calcium. We estimate that domains III, IV, and II accumulated 0.72, 0.60, and 0.13 mol of isoaspartate per mol of calmodulin, respectively. The Asn-97-Gly-98 sequence (domain III) is the greatest contributor to isoaspartate formation. Other major sites of isoaspartate formation are Asp-131-Gly-132 and Asp-133-Gly-134 in domain IV, and Asn-60-Gly-61 in domain II. Significant isoaspartate formation was also localized to Asp-20, Asp-22, and/or Asp-24 in domain I, to Asp-56 and/or Asp-58 in domain II, and to Asp-93 and/or Asp-95 in domain III. All of these residues are calcium ligands in the highly conserved EF-hand calcium-binding motif. Thus, other EF-hand proteins may also be subject to isoaspartate formation at these ligands. The results support the idea that isoaspartate formation in structured proteins is strongly influenced by both the C-flanking residue and by local flexibility.  相似文献   
3.
Recent studies have suggested that the isomerization/racemization of aspartate residues in proteins increases in aged tissues. One such residue is Asp151 in lens‐specific αA‐crystallin. Although many isomerization/racemization sites have been reported in various proteins, the factors that lead to those modifications in proteins in vivo remain obscure. Therefore, an in vitro system is needed to assess the mechanisms of modifications of Asp under various conditions. Deamidation of Asn to Asp in proteins occurs more rapidly than isomerization/racemization of Asp, although the reaction passes through the same intermediate in both pathways. Here, therefore, we replaced Asp151 in human lens αA‐crystallin with Asn by using site‐directed mutagenesis. The recombinant protein was expressed in Escherichia coli and used to investigate the deamidation/isomerization/racemization of Asn151 after incubation at 50°C for various durations and under different pH. After incubation, the mutant αA‐crystallin was subjected to enzymatic digestion followed by liquid chromatography–MS/MS to evaluate the ratio of modifications in Asn151‐containing peptides. The Asp151Asn αA‐crystallin mutant showed rapid deamidation to Asp with the formation of specific Asp isomers. In particular, deamidation increased greatly under basic conditions. By contrast, subunit–subunit interactions between αA‐crystallin and αB‐crystallin had little effect on the modification of Asn151. Our findings suggest that the Asp151Asn αA‐crystallin mutant represents a good in vitro model protein to assess deamidation, isomerization, and the racemization intermediates. Furthermore, our in vitro results show a different trend from in vivo data, implying the presence of specific factors that induce racemization from L‐Asp to D‐Asp residues in vivo.  相似文献   
4.
Deamidation of asparagine residues, a post-translational modification observed in proteins, is a common degradation pathway in monoclonal antibodies (mAbs). The kinetics of deamidation is influenced by primary sequence as well as secondary and tertiary folding. Analytical hydrophobic interaction chromatography (HIC) is used to evaluate hydrophobicity of candidate mAbs and uncover post-translational modifications. Using HIC, we discovered atypical heterogeneity in a highly hydrophobic molecule (mAb-1). Characterization of the different HIC fractions using LC/MS/MS revealed a stable succinimide intermediate species localized to an asparagine-glycine motif in the heavy chain binding region. The succinimide intermediate was stable in vitro at pH 7 and below and increased on storage at 25°C and 40°C. Biacore evaluation showed a decrease in binding affinity of the succinimide intermediate compared with the native asparagine molecule. In vivo studies of mAb-1 recovered from a pharmacokinetic study in cynomolgus monkeys revealed an unstable succinimide species and rapid conversion to aspartic/iso-aspartic acid. Mutation from asparagine to aspartic acid led to little loss in affinity. This study illustrates the importance of evaluating modifications of therapeutic mAbs both in vitro and in serum, the intended environment of the molecule. Potential mechanisms that stabilize the succinimide intermediate in vitro are discussed.  相似文献   
5.
Deamidation is a prevalent modification of crystallin proteins in the vertebrate lens. The effect of specific sites of deamidation on crystallin stability in vivo is not known. Using mass spectrometry, a previously unreported deamidation in beta B1-crystallin was identified at Gln146. Another deamidation was investigated at Asn157. It was determined that whole soluble beta B1 contained 13%-17% deamidation at Gln146 and Asn157. Static and quasi-elastic laser light scattering, circular dichroism, and heat aggregation studies were used to explore the structure and associative properties of recombinantly expressed wild-type (wt) beta B1 and the deamidated beta B1 mutants, Q146E and N157D. Dimer formation occurred for wt beta B1, Q146E, and N157D in a concentration-dependent manner, but only Q146E showed formation of higher ordered oligomers at the concentrations studied. Deamidation at Gln146, but not Asn157, led to an increased tendency of beta B1 to aggregate upon heating. We conclude that deamidation creates unique effects depending upon where the deamidation is introduced in the crystallin structure.  相似文献   
6.
The folding of ribonuclease A (RNase A) has been extensively studied by characterizing the disulfide containing intermediates using different experimental conditions and analytical techniques. So far, some aspects still remain unclear such as the role of the loop 65-72 in the folding pathway. We have studied the oxidative folding of a RNase A derivative containing at position 67 the substitution Asn --> isoAsp where the local structure of the loop 65-72 has been modified keeping intact the C65-C72 disulfide bond. By comparing the folding behavior of this mutant to that of the wild-type protein, we found that the deamidation significantly decreases the folding rate and alters the folding pathway of RNase A. Results presented here shed light on the role of the 65-72 region in the folding process of RNase A and also clarifies the effect of the deamidation on the folding/unfolding processes. On a more general ground, this study represents the first characterization of the intermediates produced along the folding of a deamidated protein.  相似文献   
7.
The N-terminal sequence myr-Gly-Asn is conserved among the myristoylated cAPK (protein kinase A) catalytic subunit isozymes Calpha, Cbeta, and Cgamma. By capillary LC-MS and tandem MS, we show that, in approximately one third of the Calpha and Cbeta enzyme populations from cattle, pig, rabbit, and rat striated muscle, Asn 2 is deamidated to Asp 2. This deamidation accounts for the major isoelectric variants of the cAPK C-subunits formerly called CA and CB. Deamidation also includes characteristic isoaspartate isomeric peptides from Calpha and Cbeta. Asn 2 deamidation does not occur during C-subunit preparation and is absent in recombinant myristoylated Calpha (rCalpha) from Escherichia coli. Deamidation appears to be the exclusive pathway for introduction of an acidic residue adjacent to the myristoylated N-terminal glycine, verified by the myristoylation negative phenotype of an rCalpha(Asn 2 Asp) mutant. This is the first report thus far of a naturally occurring myr-Gly-Asp sequence. Asp 2 seems to be required for the well-characterized (auto)phosphorylation of the native enzyme at Ser 10. Our results suggest that the myristoylated N terminus of cAPK is a conserved site for deamidation in vivo. Comparable myr-Gly-Asn sequences are found in several signaling proteins. This may be especially significant in view of the recent knowledge that negative charges close to myristic acid in some proteins contribute to regulating their cellular localization.  相似文献   
8.
AIMS: It was the aim of our work to investigate glutamine deamidation by lactic acid bacteria isolated from cereal fermentations and to elucidate the ecological and technological relevance in baking of the conversion of glutamine to glutamate. METHODS AND RESULTS: Lactobacillus sanfranciscensis and Lact. reuteri were found to display glutaminase activity. The addition of glutamine to modified Man, Rogosa and Sharp medium increased the cell yields of Lact. sanfranciscensis, as well as the production of lactic and acetic acid. The final pH; however, was increased in the glutamine-containing medium. The addition of 47 mmol kg(-1) glutamate to chemically acidified doughs significantly changed the bread flavour. In sourdoughs with enhanced proteolytic activity, strain-dependent production of 27-120 mmol glutamate per kilogram sourdough was observed. CONCLUSIONS: Lactobacillus sanfranciscensis and Lact. reuteri converted glutamine into glutamate; this conversion improves the acid tolerance of lactobacilli and significantly influences wheat bread flavour. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper illustrates the complex interaction of sourdough-lactobacilli with their environment: the flour provides substrates for metabolic activities that enable the lactobacilli to reach higher cell counts, and the produced metabolite may be one of the reasons why the flavour of fermented breads is different to the flavour of chemically acidified breads.  相似文献   
9.
The minireview summarizes the recent preparation of thefollowing unusually modified combinatorial peptide collectionsuseful for diagnostics and screening in drug finding. Tissuetransglutaminase catalyzes cross couplings with transamidationbetween Gln and Lys peptide chains resulting in libraries withisopeptide bonds. The enzyme is involved in the triggering ofautoantigenic B- and T-cell epitopes of coeliac disease. Themicrobial enzyme EpiD involved in lantibiotic biosynthesiscatalyzes oxidative decarboxylation of C-terminal cysteineresidues in peptide libraries transforming peptidyl-cysteinesto peptide (2-mercaptovinyl)amides. Novel backbone modifiedpeptide libraries are prepared using oxazole and thiazolebuilding blocks carrying amino acid side chains. These aminoacids have been found in many biologically active naturalproducts from marine and microbial organisms such as microcinB17. Dityrosine and isodityrosine linked peptide dimerlibraries are accessible by oxidative phenol coupling usinghorseradish peroxidase. Such structural elements are found forexample in the polycyclic glycopeptide antibiotics of thevancomycin type. Microstructured layers of linear and cyclicpeptide libraries are generated on transducer surfaces forcellular assays, sensor developments and even chiralrecognition. Examples include a light-directed andmicrostructured electrochemical polymerization of phenollabelled peptides.  相似文献   
10.
Soybean globulins were deamidated after removing phytate using ion-exchange resins, and then hydrolyzed by digestive enzymes. The phytate-removed deamidated soybean globulins (PrDS) retained high calcium-binding ability even after the hydrolysis by digestive enzymes. PrDS and its hydrolysates enhanced calcium absorption from the small intestine when injected into the small intestine together with a calcium solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号