首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2014年   1篇
  2013年   1篇
  2007年   3篇
  2006年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Abstract

A series of new homo and heterodimers of ddI has been synthesized. A glutarate diester spacer was used to covalently couple ddI onto ddI, AZT or d4T.  相似文献   
2.
Mitochondrial thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) catalyze the initial rate limiting phosphorylation of deoxynucleosides and are essential enzymes for mitochondrial function. Chemotherapy using nucleoside analogs is often associated with mitochondrial toxicities. Here we showed that incubation of U2OS cells with didanosine (ddI, 2′,3′-dideoxyinosine), a purine nucleoside analog used in the highly active antiretroviral therapy (HAART), led to selective degradation of both mitochondrial TK2 and dGK while the cytosolic deoxycytidine kinase (dCK) and thymidine kinase 1 (TK1) were not affected. Addition of guanosine to the ddI-treated cells prevented the degradation of mitochondrial TK2 and dGK. The levels of intracellular reactive oxygen species and protein oxidation in ddI-treated and control cells were also measured. The results suggest that down-regulation of mitochondrial TK2 and dGK may be a mechanism of mitochondrial toxicity caused by antiviral and anticancer nucleoside analogs.  相似文献   
3.
BACKGROUND: In pregnant women, antiretroviral drugs improve maternal health and reduce vertical transmission of human immunodeficiency virus to the infant. However, few nonclinical studies have examined the potential for adverse drug interactions. METHODS: On gestational days (GD) 6-16, mice were dosed with vehicle, ddI (360, 1440, or 2,880 mg/kg/day, p.o.), d4T (60, 240, or 480), or ddI/d4T combinations (360/60, 1,440/240, or 2,880/480). Daily doses were divided into two equal parts that were administered >or=6-hr apart. Body weight, clinical signs, and feed consumption were monitored. Pregnancies (22-24/group) were confirmed at necropsy. Maternal liver and gravid uterine weights (GUW), uterine implants (resorption, live or dead fetus), fetal body weight, gender, and morphologic anomalies (external, visceral, skeletal) were recorded. RESULTS: Maternal body weight, clinical signs, and GUW were unaffected. Maternal weight change corrected for GUW was greater than controls at 60 and 480 d4T. Relative feed consumption during treatment was increased relative to controls at 1,440 and 2,880 ddI and 2,880/480 ddI/d4T. Relative maternal liver weight was elevated above controls at 240 and 480 d4T and 2,880/480 ddI/d4T, and above the constituent dose of ddI at 1,440/240 and 2,880/480 ddI/d4T. Liver weight was not affected by ddI and there was no significant drug interaction. Prenatal mortality and morphologic anomalies were not increased. Fetal body weight showed only a decreasing trend for ddI/d4T, no effect for ddI or d4T, and no statistically significant drug interaction. CONCLUSIONS: In pregnant mice, ddI/d4T combinations were not associated with well-defined developmental toxicity or adverse drug interactions.  相似文献   
4.
In antiviral and cancer therapy, deoxyribonucleoside kinases (dNKs) are often the rate-limiting step in activating nucleoside analog (NA) prodrugs into their cytotoxic, phosphorylated forms. We have constructed libraries of hybrid enzymes by non-homologous recombination of the pyrimidine-specific human thymidine kinase 2 and the broad-specificity dNK from Drosophila melanogaster; their low sequence identity has precluded engineering by conventional, homology-dependent shuffling techniques. From these libraries, we identified chimeras that phosphorylate nucleoside analogs with higher activity than either parental enzyme, and that possess new activity towards the anti-HIV prodrug 2',3'-didehydro-3'-deoxythymidine (d4T). These results demonstrate the potential of non-homologous recombination within the dNK family for creating enzymes with new and improved activities towards nucleoside analogs. In addition, our results exposed a previously unknown role for the C-terminal regions of these dNKs in determining substrate selectivity.  相似文献   
5.
Deoxyribonucleoside kinases (dNKs) catalyze the transfer of a phosphoryl group from ATP to a deoxyribonucleoside (dN), a key step in DNA precursor synthesis. Recently structural information concerning dNKs has been obtained, but no structure of a bacterial dCK/dGK enzyme is known. Here we report the structure of such an enzyme, represented by deoxyadenosine kinase from Mycoplasma mycoides subsp. mycoides small colony type (Mm-dAK). Superposition of Mm-dAK with its human counterpart's deoxyguanosine kinase (dGK) and deoxycytidine kinase (dCK) reveals that the overall structures are very similar with a few amino acid alterations in the proximity of the active site. To investigate the substrate specificity, Mm-dAK has been crystallized in complex with dATP and dCTP, as well as the products dCMP and dCDP. Both dATP and dCTP bind to the enzyme in a feedback-inhibitory manner with the dN part in the deoxyribonucleoside binding site and the triphosphates in the P-loop. Substrate specificity studies with clinically important nucleoside analogs as well as several phosphate donors were performed. Thus, in this study we combine structural and kinetic data to gain a better understanding of the substrate specificity of the dCK/dGK family of enzymes. The structure of Mm-dAK provides a starting point for making new anti bacterial agents against pathogenic bacteria.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号