首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  5篇
  2013年   1篇
  2012年   4篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
The non-L-glutamate (L-Glu) receptor component of D-aspartate (D-Asp) currents in Aplysia californica buccal S cluster (BSC) neurons was studied with whole cell voltage clamp to differentiate it from receptors activated by other well-known agonists of the Aplysia nervous system and investigate modulatory mechanisms of D-Asp currents associated with synaptic plasticity. Acetylcholine (ACh) and serotonin (5-HT) activated whole cell excitatory currents with similar current voltage relationships to D-Asp. These currents, however, were pharmacologically distinct from D-Asp. ACh currents were blocked by hexamethonium (C6) and tubocurarine (D-TC), while D-Asp currents were unaffected. 5-HT currents were blocked by granisetron and methysergide (MES), while D-Asp currents were unaffected. Conversely, while (2S,3R)-1-(Phenanthren-2-carbonyl)piperazine-2,3-dicarboxylic acid(PPDA) blocked D-Asp currents, it had no effect on ACh or 5-HT currents. Comparison of the charge area described by currents induced by ACh or 5-HT separately from, or with, D-Asp suggests activation of distinct receptors by all 3 agonists. Charge area comparisons with L-Glu, however, suggested some overlap between L-Glu and D-Asp receptors. Ten minute exposure to 5-HT induced facilitation of D-Asp-evoked responses in BSC neurons. This effect was mimicked by phorbol ester, suggesting that protein kinase C (PKC) was involved.  相似文献   
3.
Non-cell autonomous pathology is widely accepted to determine the demise of motoneurons (MNs) in amyotrophic lateral sclerosis (ALS) with astrocytes, GFAP and glutamate transport suggested to play roles in reactive astrogliosis. Previously we described actions of excitotoxicity and oxidative stress to produce differential injury of motoneurons and astrocytes, respectively, and our goal here was to define patterns of MN injury and astrogliosis during a combined excitotoxic-oxidative injury since such a paradigm more closely models disease pathology. Using an in vitro neuronal-glial culture of embryonic mouse spinal cord, we demonstrate that glutamate transport activity was maintained or increased initially, despite a loss of cellular viability, induced by exposure to combinations of excitotoxic [(S)-5-fluorowillardiine (FW)] and oxidative [3-morpholinosydnonimine (SIN-1)] insults over 48h. Under these conditions, injury was slow in time course and apoptotic-like as shown by the patterns of annexin V and propidium iodide (PI) labelling. Immunocytochemistry for SMI-32 revealed that injury produced time- and insult-dependent reductions in the size of MN arbours, axonal dieback and appreciable neuritic blebbing. These changes were preceded by early hypertrophy of GFAP-positive astrocytes, and followed by more delayed stellation and eventual gliotoxicity. Alterations to EAAT2 immunolabelling were similar to those found for GFAP being initially maintained and then eventually reduced at 48h. Image analysis of immunocytochemical data confirmed the differential time-dependent changes found with SMI-32, GFAP and EAAT2. Axonopathy and blebbing of MNs was frequently associated with areas of low GFAP immunoreactivity. The exact profile of changes to MNs and astrocytes was context-dependent and sensitive to subtle changes in the mix of excitotoxic-oxidative insults. Overall our findings are consistent with the concepts that the nature, extent and time-course of astrogliosis are insult-dependent, and that discrete pro-survival and destructive components of astrogliosis are likely to determine the precise profile of MN injury in non-cell autonomous pathology of ALS.  相似文献   
4.
Zhao H  Wang F  Wang J  Xie H  Guo J  Liu C  Wang L  Lu X  Bao Y  Wang G  Zhong R  Niu B  Zhang T 《Gene》2012,505(2):340-344
Protein-L-isoaspartate (D-aspartate) O-methyltransferase 1 (PCMT1) gene encodes for the protein repair enzyme L-isoaspartate (D-aspartate) O-methyltransferase (PIMT), which is known to protect certain neural cells from Bax-induced apoptosis. Previous study has shown that PCMT1 polymorphisms rs4552 and rs4816 of infant are associated with spina bifida in the Californian population. The association between maternal polymorphism and neural tube defects is still uncovered. A case-control study was conducted to investigate a possible association between maternal PCMT1 and NTDs in Lvliang high-risk area of Shanxi Province in China, using a high-resolution DNA melting analysis genotyping method. We found that increased risk for anencephaly in isolated NTDs compared with the normal control group was observed for the G (vs. A) allele (p=0.034, OR=1.896, 95% CI, 1.04-3.45) and genotypes GG+GA (p=0.025, OR=2.237, 95% CI, 1.09-4.57). Although the significance was lost after multiple comparison correction, the results implied that maternal polymorphisms in PCMT1 might be a potential genetic risk factor for isolated anencephaly in this Chinese population.  相似文献   
5.
Apoptosis-inducing factor (AIF) is a flavin-binding mitochondrial intermembrane space protein that is implicated in diverse but intertwined processes that include maintenance of electron transport chain function, reactive oxygen species regulation, cell death, and neurodegeneration. In acute brain injury, AIF acquires a pro-death role upon translocation from the mitochondria to the nucleus, where it initiates chromatin condensation and large-scale DNA fragmentation. Although harlequin mice exhibiting an 80–90% global reduction in AIF protein are resistant to numerous forms of acute brain injury, they paradoxically undergo slow, progressive neurodegeneration beginning at three months of age. Brain deterioration, accompanied by markers of oxidative stress, is most pronounced in the cerebellum and retina, although it also occurs in the cortex, striatum, and thalamus. Loss of an AIF pro-survival function linked to assembly or stabilization of electron transport chain complex I underlies chronic neurodegeneration. To date, most studies of neurodegeneration have failed to adequately separate the relative importance of the mitochondrial and nuclear functions of AIF in determining the extent of injury, or whether oxidative stress plays a causative role. This review explores the complicated relationship among AIF, complex I, and the regulation of mitochondrial reactive oxygen species levels. It also discusses the controversial role of complex I deficiency in Parkinson’s disease, and what can be learned from the AIF- and complex I-depleted harlequin mouse.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号