首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2007年   1篇
  2005年   1篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
The interaction of endogenous and exogenous stimulators of innate immunity was examined in primary cultures of mouse microglial cells and macrophages after application of defined Toll-like receptor (TLR) agonists [lipopolysaccharide (LPS) (TLR4), the synthetic lipopeptide Pam3Cys-Ser-Lys4 (Pam3Cys) (TLR2) and single-stranded unmethylated CpG-DNA (CpG) (TLR9)] alone and in combination with amyloid beta peptide (Abeta) 1-40. Abeta1-40 stimulated microglial cells and macrophages primed by interferon-gamma in a dose-dependent manner. Co-administration of Abeta1-40 with LPS or Pam3Cys led to an additive release of nitric oxide (NO) and tumour necrosis factor alpha (TNF-alpha). This may be one reason for the clinical deterioration frequently observed in patients with Alzheimer's disease during infections. In contrast, co-application of Abeta1-40 with CpG led to a substantial decrease of NO and TNF-alpha release compared with stimulation with CpG alone. Abeta1-40 and CpG did not co-localize within the same subcellular compartment, making a direct physicochemical interaction as the cause of the observed antagonism very unlikely. This suggests that not all TLR agonists enhance the stimulatory effect of A beta on innate immunity.  相似文献   
2.
Toll-like receptors (TLR) play a key role in the recognition of pathogenic organisms. Fibronectin, an extracellular matrix protein, is considered a potent stimulator of the innate immune system through TLR4. In bacterial meningitis, several extracellular matrix proteins and bacterial compounds are elevated in the CSF. For this reason, we hypothesized that these molecules may jointly stimulate the innate immune system and increase neuronal damage in bacterial meningitis. Concentrations of fibronectin were elevated in the CSF of patients suffering from bacterial meningitis, but not in patients with multiple sclerosis, when compared with control patients without CSF abnormalities. In primary cultures of mouse microglial cells, co-administration of fibronectin at concentrations occurring in the CSF in bacterial meningitis (10 microg/mL) with defined TLR agonists [lipopolysaccharide (TLR4), the synthetic lipopeptide tripalmytoyl-cysteinyl-seryl-(lysyl)3-lysine (TLR2) and single-stranded unmethylated cytosine-guanosine oligodesoxynucleotide (TLR9)] led to an additive release of nitric oxide and tumor necrosis factor-alpha when compared with the release elicited by either compound alone. In conclusion, the inflammatory reaction to bacterial compounds can be aggravated by endogenous fibronectin at elevated levels during bacterial CNS infections. This additive or synergistic effect may contribute to neuronal damage during bacterial meningitis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号