首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2012年   1篇
  1989年   1篇
  1982年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Turkey erythrocyte adenylate cyclase was activated by GppNHp and l-epinephrine to its stable, highly active form. In this form the enzyme could be solubilized by Lubrol-PX and subsequently re-inserted into phospholipid vesicles concomitantly with the removal of up to 99.3% of the Lubrol. The ability of GTP and l-epinephrine to reverse the GppNHp/epinephrine activated state was taken as a measure for the reappearance of hormone sensitivity in the reconstituted vesicles. An incomplete but significant reappearance of hormone sensitivity in the reconstituted adenylate cyclase was achieved. This hormone sensitivity was found to be stereospecific for (?)epinephrine. The 125I-cyanopindolol binding properties of the reconstituted β-receptor depend on the nature of the detergent and the phospholipids used in the reconstitution.  相似文献   
2.
The radioiodinated pindolol analogs 125I-labeled cyanopindolol ([125I]CYP) and 125I-labeled hydroxybenzylpindolol ([125I]HBP) have been used to study binding to human platelet β-adrenergic receptors. [125I]CYP binds to a saturable class of binding sites on platelet membranes with a dissociation constant (Kd) of 14±3 pM and maximal binding capacity (Bmax) of 18±4 fmol/mg protein. Binding of [125I]CYP is reversible and is characterized by forward and reverse rate constants of 1.8·107 s?1·M?1 and 3.8·10?4 s?1, respectively. [125I]HBP binds to a saturable class of platelet membrane sites with a Kd of 50±10 pM and Bmax of 32±6 fmol/mg protein. [125I]HBP also binds to a saturable class of sites on intact platelets with a Kd of 58±14 pM and Bmax of 24±4 molecules per platelet. Binding of [125I]CYP and [125I]HBP is stereospecifically inhibited by propranolol and epinephrine; the (?) stereoisomers are at least 50-times more potent than the (+) stereoisomers. Binding of both radioligands is inhibited by adrenergic ligands with a potency order of propranolol ? isoproterenol > epinephrine > practolol > norepinephrine > phenylephrine. These observations indicate that [125I]CYP and [125I]HBP bind to platelet sites which have the pharmacological characteristics of β-adrenergic receptors but which are not typical of either the β1 or β2 sub-type.  相似文献   
3.
The Gq-coupled oxytocin receptor (OTR) and the Gs-coupled β2-adrenergic receptor (β2AR) are both expressed in myometrial cells and mediate uterine contraction and relaxation, respectively. The two receptors represent important pharmacological targets as OTR antagonists and β2AR agonists are used to control pre-term uterine contractions. Despite their physiologically antagonistic effects, both receptors activate the MAP kinases ERK1/2, which has been implicated in uterine contraction and the onset of labor. To determine the signalling pathways involved in mediating the ERK1/2 response, we assessed the effect of blockers of specific G protein-associated pathways. In human myometrial hTERT-C3 cells, inhibition of Gαi as well as inhibition of the Gαq/PKC pathway led to a reduction of both OTR- and β2AR-mediated ERK1/2 activation. The involvement of Gαq/PKC in β2AR-mediated ERK1/2 induction was unexpected. To test whether the emergence of this novel signalling mechanism was dependent on OTR expression in the same cell, we conducted experiments in HEK 293 cells that were transfected with the β2AR alone or co-transfected with the OTR. Using this approach, we found that β2AR-mediated ERK1/2 responses became sensitive to PKC inhibition only in cells co-transfected with the OTR. Inhibitor studies indicated the involvement of an atypical PKC isoform in this process. We confirmed the specific involvement of PKCζ in this pathway by assessing PKCζ translocation to the cell membrane. Consistent with our inhibitor studies, we found that β2AR-mediated PKCζ translocation was dependent on co-expression of OTR. The present demonstration of a novel β2AR-coupled signalling pathway that is dependent on OTR co-expression is suggestive of a molecular interaction between the two receptors.  相似文献   
4.
Several manipulations that affect G protein/receptor coupling also alter the binding of [125I]iodocyanopindolol ([125I]ICYP)±cyanopindolol (±CYP) to rat brain 5-HT1B binding sites in radiologand binding assays. Inclusion of 5 mM MgSO4 in these assays results in a small but significant increase in the affinity of [125I]ICYP (fromK D=0.046 nM toK D=0.037 nM). In contrast, 100 M Gpp(NH)p, GTP, or GDP reduce [125I]ICYP affinity (K D=0.056 nM with GTP) while ATP and GMP are less effective.±CYP affinity for 5-HT1B sites labeled by [3H]dihydroergotamine ([3H]DE) also displays a small but significant reduction (from Ki=1.4 nM to Ki=3.5nM) by the inclusion of 100 M GTP. Pre-treatment of the brain membranes with N-ethylmaleimide (NEM) in concentrations known to inactivate many G proteins reduces 5-HT1B specific binding of [125I]ICYP. The NEM induced reduction in [125I]ICYP binding can be reversed by reconstitution with purified exogenous G proteins (Go and Gi), demonstrating directly that high affinity binding of [125I]ICYP to 5-HT1B sites is dependent on G proteins. The effects of Mg2+ ion, guanine nucleotides, NEM and G protein reconstitution on [125I]ICYP and ±CYP binding are all hallmarks of agonist binding to G protein linked receptors. The effect of GTP, however, is quantitatively much less for the binding of these pindolol derivatives than for the binding of 5-HT, a presumed full agonist at 5-HT1B sites. The relatively slight stabilization of [125I]ICYP and ±CYP binding conferred by G protein/5-HT1B receptor interaction may reflect the molecular events underlying previous observations that these compounds are partial 5-HT1B agoinists.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号