首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   965篇
  免费   28篇
  国内免费   8篇
  1001篇
  2023年   7篇
  2022年   13篇
  2021年   8篇
  2020年   19篇
  2019年   16篇
  2018年   18篇
  2017年   24篇
  2016年   17篇
  2015年   19篇
  2014年   32篇
  2013年   44篇
  2012年   12篇
  2011年   38篇
  2010年   27篇
  2009年   40篇
  2008年   44篇
  2007年   39篇
  2006年   56篇
  2005年   37篇
  2004年   29篇
  2003年   42篇
  2002年   32篇
  2001年   20篇
  2000年   19篇
  1999年   15篇
  1998年   7篇
  1997年   15篇
  1996年   7篇
  1995年   12篇
  1994年   12篇
  1993年   7篇
  1992年   9篇
  1991年   16篇
  1990年   6篇
  1989年   6篇
  1987年   6篇
  1985年   29篇
  1984年   19篇
  1983年   18篇
  1982年   24篇
  1981年   22篇
  1980年   21篇
  1979年   13篇
  1978年   13篇
  1977年   9篇
  1976年   13篇
  1975年   21篇
  1974年   8篇
  1973年   11篇
  1972年   4篇
排序方式: 共有1001条查询结果,搜索用时 15 毫秒
1.
Sullivantia species were found to produce quercetin 3-O-glycosides, several of which contain glucuronic acid, as well as pedalitin (6-hydroxy-7-O-methyl luteolin), pedalitin 6-O-glycosides, and small amounts of luteolin. Sullivantia has a unique combination of compounds that distinguishes it from other genera in the Saxifraginae for which flavonoid data are available. The nature of the flavonoid compounds is in accordance with a general trend within the Saxifragaceae of reduction and replacement of flavonols by flavones.  相似文献   
2.
The flavonoids of five Geranium, fourteen Erodium and four Monsonia species were studied. Quercetin was the most common aglycone with lesse  相似文献   
3.
An examination of four species of Cirsium disclosed the presence of two new flavonoids in C. lineare. The structure of one was 5,4′-dihydroxy-6,7,3′-trimethoxyflavone (cirsilineol) 4′-monoglucoside and the other 5,3′,4′-trihydroxy-6,7-dimethoxyflavone (cirsiliol) 4′-monoglucoside. Luteolin 7-glucoside was found in C. suffultum, and pectolinarin and linarin in C. kamtschaticum and C. pectinellum.  相似文献   
4.
Cardiac glycoside transport was investigated on the organ and whole plant level. Uptake experiments were carried out with shoot and root cultures of Digitalis lanata. In both systems primary cardenolides, i.e., those with a terminal glucose in their oligosaccharide side chain, were taken up against their concentration gradient, whereas the glucose-free secondary cardenolides were not. Active uptake of primary cardenolides was further evidenced by KCN inhibition of uptake. Using plantlets grown in vitro the long-distance transport of primary cardenolides from the leaves to the roots was demonstrated. Cardenolides were also detected in etiolated leaves, induced on plants with green leaves, which are supposed to be unable to synthezise cardenolides de novo, providing further evidence for long-distance transport. Several primary cardenolides were detected in the honeydew excreted by aphids fed on Digitalis lanata leaves, indicating that the phloem is a transporting tissue for cardenolides. On the other hand, the xylem sap obtained by applying the pressure-chamber technique was cardenolide-free. It was concluded that in Digitalis primary cardenolides serve as both the transport and the storage form of cardenolides. After their synthesis they are either stored in the vacuoles of the source tissue or loaded into the sieve tubes, from which they are unloaded at other sites where they are trapped in the vacuoles of the respective sink tissue.  相似文献   
5.
Flavonoids of the Hydrangeaceae Dumortier   总被引:3,自引:0,他引:3  
Fourteen species representing nine genera of the Hydrangeaceae Dumortier were surveyed for their flavonoid pigments. All taxa exhibited profiles based upon common flavonols. Myricetin was seen in two genera: Jamesia and Decumaria. Jamesia was further distinguished by the absence of kaempferol or its glycosides. A complex array of 3-O-mono-, 3-O-di- and 3-O-triglycosides was observed, although not all species had all levels of glycosylation. Decumaria barbara was unique within the species studied in its possession of 3,7-di- and 3,7-triglycosides. The overall pattern of flavonol glycosides observed for the Hydrangeaceae closely resembles that found in herbaceous genera of Saxifragaceae. The comparatively low frequency of myricetin contrasts with its high occurrence in herbaceous genera.  相似文献   
6.
Monoterpene glycoside biosynthesis in detached grape berries grown in vitro   总被引:2,自引:0,他引:2  
A procedure for the culture in vitro of isolated small berries of Vitis vinifera L. cv. Muscat of Alexandria in a Murashige and Skoog basal medium supplemented with N6-benzyladenine and indoleacetic acid is described. Berries developed well in culture during 60 days and tripled in size, but remained green and smaller than normal berries grown in vivo. Some callus formed on the distal end of the berry, and where major skin damage occurred, callus emerged from the cracked berries. In order to examine their biosynthetic competency, berries which were previously cultured in vitro for 60 days were incubated for 48 h in a Murashige and Skoog medium containing a [14C]-labelled water-soluble fraction. This fraction was isolated from grape berries located adjacent to a leaf that had been exposed to gaseous 14CO2 in full sunlight for 5 h. The berries were then recultured for 48 h after which a glycosidic fraction was isolated on a C18 reversed phase column and further separated by thin layer chromatography (TLC). The major labelled band corresponded to the geranyl-β-rutinoside marker, indicating that grape berries have the ability to synthesize monoterpene glycosides. This band also consisted of other monoterpene glycosides as revealed by the gas chromatography-mass spectrometry (GC-MS) analysis of their aglycones (released by enzymatic hydrolysis).  相似文献   
7.
乌奴龙胆中五个新的环烯醚萜甙   总被引:4,自引:0,他引:4  
从藏药乌奴龙胆(GentianaurnulaSmith)(龙胆科)的全草中分离到5个新的环烯醚萜甙,命名为乌奴龙胆甙(gentioumoside)A-E;它们的结构主要通过光谱分析得以确定。其中,乌奴龙胆A-C是二聚环烯醚萜甙,而乌奴龙胆甙D和E为马钱素型的环烯醚萜甙,所有这些化合物的分子中都具有一个2,3-二羟基苯甲酰基或其衍生物的取代基。  相似文献   
8.
The glycosylation and deglycosylation of cardiac glycosides was investigated using cell suspension cultures and shoot cultures, both established from Digitalis lanata EHRH. plants, as well as isolated enzymes. Shoots were capable of glucosylating digitoxigenin, evatromonoside, digiproside, glucodigitoxigenin and digitoxin. Suspension cultured Digitalis cells glucosylated all the substrates mentioned but digiproside, whereas the UDP-glucosedependent cardinolide glucosyltransferase isolated from that source did not accept digitoxigenin and digiproside as substrates. It is concluded that at least three different glucosyltransferases are involved in cardiac glycoside formation in Digitalis. Similar experiments carried out with glucosylated cardenolides which were administered to cultured cells, shoots and a cardenolide -glucosidase isolated from young leaves revealed that at least two different glucosidases occur in Digitalis lanata, albeit in different tissues or during different phases of development. The biotransformation of glucoevatromonoside was investigated using unlabelled compound and [14C-glucose]-glucoevatromonoside synthesized enzymatically. After 7 d of incubation almost no radioactivity could be recovered from the cardenolide fraction, indicating that the terminal glucose of glucoevatromonoside was now incorporated into volatile, hydrophilic and insoluble compounds. Since, on the other hand, large amounts of cardenolides were found in the experiments with unlabelled glucoevatromonoside it is assumed that steady state or pool size regulation is achieved by the coordinated action of a cardenolide glucosidase and a glucosyltransferase.Abbreviations Acdox D-acetyldigitoxose - dgen digoxigenin - dox D-digitoxose - dten digitoxigenin - dtl D-digitalose - fuc D-fucose - gten gitoxigenin - qun D-quinovose - CGH cardenolide 16-O-glucohydrolase - DFT UDP-fucose:digitoxigenin 3-O-fucosyltransferase - DGT UDP-glucose:Digitoxin 16-O-glucosyltransferase - DQT UDP-quinovose:digitoxigenin 3-O-quinovosyltransferase  相似文献   
9.
Evolution of HCN from both rice ( Oryza sativa ) and cocklebur ( Xanthium pennsylvanicum ) seeds increased during a pre-germination period and preceded the evolution of (C2H4). These two species were adopted as the representatives of starchy and fatty seeds, respectively. Ethylene promotes seed germination of many species. However, HCN evolution declined abruptly when the radicles emerged and before the peak in C2H4 evolution. More-over, both rice and soybean ( Glycine max ) seeds showed some activity of β-cyanoalanine synthase (CAS, EC 4.4.1.9) even in the unimbibed dry state. The activities of CAS in the lower seed of cocklebur and in soybean seeds increased rapidly after emergence of the radicle. However, the CAS of rice seeds, with high activity in the dry state, exhibited a bimodal change, gradually decreasing until radicle emergence had occurred, but then increaing. It is thus likly that HCN evolution during initial imbibition may be derived from cyanogenic reserves and controlled by both pre-existing and subsequently-developing CAS. The exogenous application of C2H4 stimulated the activities of CAS in both rice and upper cocklebur seeds and reduced their cyanogen contents. Therefore, the decline of HCN evolution after germination seems to be due to the increased activities of CAS by endogenously produced C2H4.  相似文献   
10.
Twenty-one flavonoid glycosides were isolated from the leaves of 22 North AmericanVitis L. taxa, representing two subgenera and five series. Three chemical groups were evident: one producing flavonols, flavones, and C-glycosylflavones, a second producing flavonols and flavones, and a third producing only flavonols. These three chemical groups did not correspond to any of the subgeneric groupings based on morphology. However, flavonoid distributions within series in each subgenus correlate well with morphological data. Parallel flavonoid evolution within each series is thought to account for this lack of subgeneric and interserial flavonoid distinction. The flavonoid data indicate that seriesCordifoliae of subgenusVitis, particularlyV. vulpina L., is the most closely related group to subgenusMuscadinia (Planch.)Rehder, and represents an evolutionary link between the two subgenera.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号