首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   4篇
  2023年   1篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2011年   3篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2000年   1篇
  1997年   1篇
  1990年   1篇
排序方式: 共有21条查询结果,搜索用时 109 毫秒
1.
2.
3.

Background and Aims

Thousands of floor mosaics were produced in lands across the Roman and Byzantine empires. Some mosaics contain depictions of agricultural produce, potentially providing useful information concerning the contemporary presence and popularity of crop plants in a particular geographical region. Hundreds of floor mosaics produced in Israel during the Byzantine period have survived. The objective of the present work was to search these mosaics for Cucurbitaceae in order to obtain a more complete picture of cucurbit crop history in the eastern Mediterranean region.

Results and Conclusions

Twenty-three mosaics dating from 350–600 ce were found that had images positively identifiable as cucurbits. The morphological diversity of the cucurbit fruits in the mosaics of Israel is greater than that appearing in mosaics from any other Roman or Byzantine provincial area. The depicted fruits vary in shape from oblate to extremely long, and some are furrowed, others are striped and others lack definite markings. The cucurbit taxa depicted in the mosaics are Cucumis melo (melon), Citrullus lanatus (watermelon), Luffa aegyptiaca (sponge gourd) and Lagenaria siceraria (bottle gourd). Cucumis melo is the most frequently found taxon in the mosaics and is represented by round dessert melons and long snake melons. Fruits of at least two cultivars of snake melons and of watermelons are represented. To our knowledge, images of sponge gourds have not been found in Roman and Byzantine mosaics elsewhere. Indeed, the mosaics of Israel contain what are probably the oldest depictions of Luffa aegyptiaca in Mediterranean lands. Sponge gourds are depicted often, in 11 of the mosaics at eight localities, and the images include both mature fruits, which are useful for cleaning and washing, and immature fruits, which are edible. Only one mosaic has images positively identifiable as of bottle gourds, and these were round–pyriform and probably used as vessels.  相似文献   
4.
Autotoxic potential of cucurbit crops   总被引:20,自引:1,他引:20  
Yu  Jing Quan  Shou  Sen Yan  Qian  Ya Rong  Zhu  Zhu Jun  Hu  Wen Hai 《Plant and Soil》2000,223(1-2):149-153
Soil sickness is often observed in cucurbit crops such as Citrullus lanatus, Cucumis melo and Cucumis sativus, but not in cucurbit crops such as Cucurbita moschata, Lagenaria leucantha and Luffa cylindrica. Results showed that root aqueous extracts of Citrullus lanatus, Cucumis melo and Cucumis sativus were autotoxic, but those of Cucurbita moschata, Momordica charantia and Luffa cylindrica were less autotoxic to the radicle elongation of respective species. Plant growth of Citrullus lanatus, Cucumis melo and Cucumis sativus were greatly inhibited by autotoxic substances released from powered root tissue at a rate of 1 g per seedling. Root exudates of Citrullus lanatus, Cucumis melo and Cucumis sativus were autotoxic to radicle elongation and seedling growth of respective species. However, root exudates of Citrullus lanatus did not inhibit radicle elongation of Cucurbita ficifolia, which is commonly used as rootstock for the grafting of Citrullus lanatus, Cucumis melo and Cucumis sativus to decrease soil-borne diseases in commercial production. It seems possible to overcome autotoxicity in cucurbit crops by grafting on Cucurbita ficifolia. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
5.

Aims

We aim to determine if Pseudomonas fluorescens is a viable biological control for Erwinia tracheiphila within the insect vector, Acalymma vittatum.

Methods and Results

Pseudomonas fluorescens secreted fluorescein and inhibited growth of E. tracheiphila in disc diffusion assays. To determine if this antagonism was conserved within the insect vector, we performed in vivo assays by orally injecting beetles with bacterial treatments and fluorescent in situ hybridization to determine bacterial presence within the alimentary canal.

Conclusions

Pseudomonas fluorescens inhibited the growth of E. tracheiphila on a nutrient‐limiting medium. In situ experiments demonstrated that P. fluorescens is maintained within the alimentary canal of the beetle for at least 4 days, and co‐occurred with E. tracheiphila. When beetles were first presented with Pseudomonas and then challenged with E. tracheiphila, E. tracheiphila was not recovered via FISH after 4 days. These data suggest that P. fluorescens has potential as a biological control agent to limit E. tracheiphila within the insect vector.

Significance and Impact of the Study

This is a novel approach for controlling E. tracheiphila that has the potential to decrease reliance on insecticides, providing a safer environment for pollinators and growers.  相似文献   
6.
A leaf spot disease of melon caused by Alternaria alternata f.sp. cucurbitae was recorded for the first time in Crete. Necrotic flecks surrounded by chlorotic halos developed on the cotyledons and the leaves of the middle and the upper part of the plants; the flecks enlarged and coalesced to form lesions of 2 cm or more in diameter with brown fructifications of the pathogen on their surface. Severely affected cotyledons and leaves became chlorotic and died. Of 16 species from eight botanical families that were inoculated, only those of the Cucurbitaceae were susceptible. Of four isolates of A. alternata from tomato, sunflower, pear and cucumber, only the cucumber isolate was pathogenic to melon foliage.  相似文献   
7.
Entomopathogenic nematodes (EPNs) from the families Steinernematidae and Hererorhabditidae are considered excellent biological control agents against many insects that damage the roots of crops. In a regional survey, native EPNs were isolated, and laboratory and greenhouse experiments were conducted to determine the infectivity of EPNs against the cucurbit fly, Dacus ciliatus Loew (Diptera: Tephritidae). Preliminary experiments showed high virulence by a native strain of Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae) and a commercial strain of Steinernema carpocapsae Weiser (Rhabditida: Steinernematidae). These two strains were employed for further analysis while another native species, Steinernema feltiae, was excluded due to low virulence. In laboratory experiments, larvae and adult flies were susceptible to nematode infection, but both nematode species induced low mortality on pupae. S. carpocapsae had a significantly lower LC50 value against larvae than H. bacteriophora in filter paper assays. Both species of EPNs were effective against adult flies but S. carpocapsae caused higher adult mortality. When EPN species were applied to naturally infested fruit (150 and 300 IJs/cm2), the mortality rates of D. ciliatus larvae were 28% for S. carpocapsae and 12% for H. bacteriophora. Both EPN strains successfully reproduced and emerged from larvae of D. ciliates. In a greenhouse experiment, H. bacteriophora and S. carpocapsae had similar effects on fly larvae. Higher rates of larval mortality were observed in sandy loam and sand soils than in clay loam. The efficacy of S. carpocapsae and H. bacteriophora was higher at 25 and 30°C than at 19°C. The results indicated that S. carpocapsae had the best potential as a biocontrol agent of D. ciliatus, based on its higher virulence and better ability to locate the fly larvae within infected fruits.  相似文献   
8.
Incidence of Viruses Infecting Cucurbits in Cyprus   总被引:1,自引:0,他引:1  
  相似文献   
9.
Bottle gourd (Lagenaria siceraria) is an important vegetable crop as well as a rootstock for other cucurbit crops. In this study, we report a high‐quality 313.4‐Mb genome sequence of a bottle gourd inbred line, USVL1VR‐Ls, with a scaffold N50 of 8.7 Mb and the longest of 19.0 Mb. About 98.3% of the assembled scaffolds are anchored to the 11 pseudomolecules. Our comparative genomic analysis identifies chromosome‐level syntenic relationships between bottle gourd and other cucurbits, as well as lineage‐specific gene family expansions in bottle gourd. We reconstructed the genome of the most recent common ancestor of Cucurbitaceae, which revealed that the ancestral Cucurbitaceae karyotypes consisted of 12 protochromosomes with 18 534 protogenes. The 12 protochromosomes are largely retained in the modern melon genome, while have undergone different degrees of shuffling events in other investigated cucurbit genomes. The 11 bottle gourd chromosomes derive from the ancestral Cucurbitaceae karyotypes followed by 19 chromosomal fissions and 20 fusions. The bottle gourd genome sequence has facilitated the mapping of a dominant monogenic locus, Prs, conferring Papaya ring‐spot virus (PRSV) resistance in bottle gourd, to a 317.8‐kb region on chromosome 1. We have developed a cleaved amplified polymorphic sequence (CAPS) marker tightly linked to the Prs locus and demonstrated its potential application in marker‐assisted selection of PRSV resistance in bottle gourd. This study provides insights into the paleohistory of Cucurbitaceae genome evolution, and the high‐quality genome sequence of bottle gourd provides a useful resource for plant comparative genomics studies and cucurbit improvement.  相似文献   
10.
A survey of papaya and 10 cucurbitaceous vegetables (ashgourd, zucchini, watermelon, cucumber, pumpkin, bottlegourd, snakegourd, spongegourd, bittergourd and choyote) during 1989 and from 1992 to 1994 in more than 68 locations (both experimental plots and farmers' fields) covering 18 terai and inner-terai districts of Nepal, indicated that these crops were heavily affected with various virus-like symptoms. The most commonly observed symptoms were severe mosaic, leaf distortion, oily streaks or spots on papaya; leaf distortion, blisters and shoe stringing on zucchini; and mosaic or yellow mosaic, blisters, and leaf distortion on other cucurbits. Average incidence of plants with symptoms ranged from 75% to 100% on papaya; 85% to 100% on zucchini; 4% to 100% on cucumber; 4% to 100% on pumpkin and 10–100% on bottlegourd, choyote and watermelon. The virus isolated from papaya and zucchini was confirmed as papaya ringspot potyvirus — watermelon strain (PRSV-W). It was also detected in survey samples from ashgourd, bittergourd, snakegourd, spongegourd, zucchini, watermelon, bottlegourd and cucumber. Leaf extracts of some cucumber, choyote, pumpkin, zucchini and snakegourd samples reacted with cucumber mosaic cucumovirus (CMV) and zucchini yellow mosaic potyvirus (ZYMV) antisera. Leaf extracts of ashgourd, cucumber and pumpkin reacted with antibodies against cucurbit aphid-borne yellow luteovirus (CABW). No samples reacted with antiserum to watermelon mosaic-2 potyvirus (WMV-2) or squash mosaic potyvirus (SqMV). Some papaya and most cucurbits leaf samples cross-reacted with antibodies against Moroccan (Mor) and Algerian (Alg) isolates of WMV. The Nepalese PRSV isolate was related to but distinct from a PRSV-W type strain from France. This is the first report on the identity of ZYMV and CABW in Nepal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号