首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   2篇
  58篇
  2023年   1篇
  2022年   5篇
  2021年   8篇
  2020年   5篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2014年   4篇
  2013年   1篇
  2011年   7篇
  2010年   1篇
  2009年   7篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
The 231-residue capsid (CA) protein of human immunodeficiency virus type 1 (HIV-1) spontaneously self-assembles into tubes with a hexagonal lattice that is believed to mimic the surface lattice of conical capsid cores within intact virions. We report the results of solid-state nuclear magnetic resonance (NMR) measurements on HIV-1 CA tubes that provide new information regarding changes in molecular structure that accompany CA self-assembly, local dynamics within CA tubes, and possible mechanisms for the generation of lattice curvature. This information is contained in site-specific assignments of signals in two- and three-dimensional solid-state NMR spectra, conformation-dependent 15N and 13C NMR chemical shifts, detection of highly dynamic residues under solution NMR conditions, measurements of local variations in transverse spin relaxation rates of amide 1H nuclei, and quantitative measurements of site-specific 15N–15N dipole–dipole couplings. Our data show that most of the CA sequence is conformationally ordered and relatively rigid in tubular assemblies and that structures of the N-terminal domain (NTD) and the C-terminal domain (CTD) observed in solution are largely retained. However, specific segments, including the N-terminal β-hairpin, the cyclophilin A binding loop, the inter-domain linker, segments involved in intermolecular NTD–CTD interactions, and the C-terminal tail, have substantial static or dynamical disorder in tubular assemblies. Other segments, including the 310-helical segment in CTD, undergo clear conformational changes. Structural variations associated with curvature of the CA lattice appear to be localized in the inter-domain linker and intermolecular NTD–CTD interface, while structural variations within NTD hexamers, around local 3-fold symmetry axes, and in CTD–CTD dimerization interfaces are less significant.  相似文献   
2.
The last 20 years have seen incredible advances in electron microscopy (EM). Cryoelectron microscopy can now resolve protein structures to a previously unimaginable resolution but the advances in cellular EM are just as significant. I will take this opportunity to briefly summarize some of the new developments in cellular EM.  相似文献   
3.
The function of the src-homology 3 (SH3) domain in class II myosins, a distinct beta-barrel structure, remains unknown. Here, we provide evidence, using electron cryomicroscopy, in conjunction with light-scattering, fluorescence and kinetic analyses, that the SH3 domain facilitates the binding of the N-terminal extension of the essential light chain isoform (ELC-1) to actin. The 41 residue extension contains four conserved lysine residues followed by a repeating sequence of seven Pro/Ala residues. It is widely believed that the highly charged region interacts with actin, while the Pro/Ala-rich sequence forms a rigid tether that bridges the approximately 9 nm distance between the myosin lever arm and the thin filament. In order to localize the N terminus of ELC in the actomyosin complex, an engineered Cys was reacted with undecagold-maleimide, and the labeled ELC was exchanged into myosin subfragment-1 (S1). Electron cryomicroscopy of S1-bound actin filaments, together with computer-based docking of the skeletal S1 crystal structure into 3D reconstructions, showed a well-defined peak for the gold cluster near the SH3 domain. Given that SH3 domains are known to bind proline-rich ligands, we suggest that the N-terminal extension of ELC interacts with actin and modulates myosin kinetics by binding to the SH3 domain during the ATPase cycle.  相似文献   
4.
Over a decade ago, genetic studies identified a family of small integral membrane proteins, commonly referred to as copper transporters (CTRs) that are both required and sufficient for cellular copper uptake in a yeast genetic complementation assay. We recently used electron crystallography to determine a projection density map of the human high affinity transporter hCTR1 embedded into a lipid bilayer. At 6 Å resolution, this first glimpse of the structure revealed that hCTR1 is trimeric and possesses the type of radial symmetry that traditionally has been associated with the structure of certain ion channels such as potassium or gap junction channels. Representative for this particular type of architecture, a region of low protein density at the center of the trimer is consistent with the existence of a copper permeable pore along the center three-fold axis of the trimer. In this contribution, we will briefly discuss how recent structure–function studies correlate with the projection density map, and provide a perspective with respect to the cellular uptake of other transition metals.  相似文献   
5.
Single particle electron microscopy (EM), of both negative stained or frozen hydrated biological samples, has become a versatile tool in structural biology 1. In recent years, this method has achieved great success in studying structures of proteins and macromolecular complexes 2, 3. Compared with electron cryomicroscopy (cryoEM), in which frozen hydrated protein samples are embedded in a thin layer of vitreous ice 4, negative staining is a simpler sample preparation method in which protein samples are embedded in a thin layer of dried heavy metal salt to increase specimen contrast 5. The enhanced contrast of negative stain EM allows examination of relatively small biological samples. In addition to determining three-dimensional (3D) structure of purified proteins or protein complexes 6, this method can be used for much broader purposes. For example, negative stain EM can be easily used to visualize purified protein samples, obtaining information such as homogeneity/heterogeneity of the sample, formation of protein complexes or large assemblies, or simply to evaluate the quality of a protein preparation.In this video article, we present a complete protocol for using an EM to observe negatively stained protein sample, from preparing carbon coated grids for negative stain EM to acquiring images of negatively stained sample in an electron microscope operated at 120kV accelerating voltage. These protocols have been used in our laboratory routinely and can be easily followed by novice users.  相似文献   
6.
Mimivirus is the largest known virus. Using cryo-electron microscopy, the virus was shown to be icosahedral, covered by long fibers, and appears to have at least two lipid membranes within its protein capsid. A unique vertex, presumably for attachment and infection of the host, can be seen for particles that have a suitable orientation on the micrographs.  相似文献   
7.
Two-dimensional crystals of dimeric photosynthetic reaction centre-LH1-PufX complexes have been analysed by cryoelectron microscopy. The 8.5A resolution projection map extends previous analyses of complexes within native membranes to reveal the alpha-helical structure of two reaction centres and 28 LH1 alphabeta subunits within the dimer. For the first time, we have achieved sufficient resolution to suggest a possible location for the PufX transmembrane helix, the orientation of the RC and the arrangement of helices within the surrounding LH1 complex. Whereas low-resolution projections have shown an apparent break in the LH1, our current map reveals a diffuse density within this region, possibly reflecting high mobility. Within this region the separation between beta14 of one monomer and beta2 of the other monomer is approximately 6A larger than the average beta-beta spacing within LH1; we propose that this is sufficient for exchange of quinol at the RC Q(B) site. We have determined the position and orientation of the RC within the dimer, which places its Q(B) site adjacent to the putative PufX, with access to the point in LH1 that appears most easily breached. PufX appears to occupy a strategic position between the mobile alphabeta14 subunit and the Q(B) site, suggesting how the structure, possibly coupled with a flexible ring, plays a role in optimizing quinone exchange during photosynthesis.  相似文献   
8.
  1. Download : Download high-res image (350KB)
  2. Download : Download full-size image
  相似文献   
9.
10.
Adenovirus invades host cells by first binding to host receptors through a trimeric fiber, which contains three domains: a receptor-binding knob domain, a long flexible shaft domain, and a penton base-attachment tail domain. Although the structure of the knob domain associated with a portion of the shaft has been solved by X-ray crystallography, the in situ structure of the fiber in the virion is not known; thus, it remains a mystery how the trimeric fiber attaches to its underlying pentameric penton base. By high-resolution cryo-electron microscopy, we have determined the structure of the human adenovirus type 5 (Ad5) to 3.6-Å resolution and have reported the full atomic models for its capsid proteins, but not for the fiber whose density cannot be directly interpreted due to symmetry mismatch with the penton base. Here, we report the determination of the Ad5 fiber structure and its mode of attachment to the pentameric penton base by using an integrative approach of multi-resolution filtering, homology modeling, computational simulation of mismatched symmetries, and fitting of atomic models into cryo-electron microscopy density maps. Our structure reveals that the interactions between the trimeric fiber and the pentameric penton base are mediated by a hydrophobic ring on the top surface of the penton base and three flexible tails inserted into three of the five available grooves formed by neighboring subunits of penton base. These interaction sites provide the molecular basis for the symmetry mismatch and can be targeted for optimizing adenovirus for gene therapy applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号