首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   3篇
  国内免费   1篇
  25篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2005年   6篇
  2004年   1篇
  2003年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
排序方式: 共有25条查询结果,搜索用时 0 毫秒
1.
J. Cordero  R. D. Cave 《BioControl》1992,37(3):397-407
Three primary parasitoids in three genera were reared fromPlutella xylostella (L.) larvae and pupae collected in various crucifer producing regions of Honduras. The ichneumonidDiadegma insulare (Cresson) was by far the most abundant species. TwoSpilochalcis species, facultative hyperparasitoids attackingP. xylostella andD. insulare, were encountered as well as eleven species in nine genera of obligate hyperparasitoids attackingD. insulare. Three vespid predators are noted as predating on larvae.   相似文献   
2.
Abstract. The offspring of parasitoids, Aphidius colemani Viereck, reared on Brussels sprouts and emerging from Myzus persicae Sulzer on a fully defined artificial diet, show no preferences in a four-way olfactometer, either for the odour of the diet, the odour of Brussels sprouts, or the odour of two other crucifers (cabbage and Chinese cabbage). A similar lack of odour preferences is shown when the host aphids are exposed for parasitization (for 48 h) on cabbage, Chinese cabbage or wheat. However, if parasitization occurs on Brussels sprouts, a weak but statistically highly significant response to Brussels sprout odour is observed. Although as many as 30–35% of the parasitoids show no response to any odour, another 35% respond positively to the odour of Brussels sprout compared with responses to the odours of cabbage, Chinese cabbage or wheat of only approximately 10%. An analagous result is obtained when the parent parasitoids are reared on cabbage. In this case, significant positive responses of their offspring to cabbage odour occur only if the 48-h parasitization has occurred also on cabbage. However, with parasitoids from Brussels sprouts parasitizing the aphids for 48 h also on Brussels sprouts, the offspring subsequently emerging from pupae excised from the mummies show no preference for Brussels sprout odour. Thus, although the Brussels sprout cue had been experienced early in the development of the parasitoids, they only become conditioned to it when emerging from the mummy. Both male and female parasitoids respond very similarly in all experiments. It is proposed that the chemical cue (probably glucosinolates in these experiments) is most likely in the silk surrounding the parasitoid pupa, and that the mother may leave the chemical in or around the egg at oviposition, inducing chemical defences in her offspring to the secondary plant compounds that the offspring are likely to encounter.  相似文献   
3.
Xanthomonas campestris pv. campestris (Xcc) is a phytopathogenic bacteria, and it is the causative agent of black rot in crucifers. Recent studies have shown that Bacillus species have strong biological control on Xanthomonas. One of the mechanisms of this control is secondary metabolites production. A collection of 257 bacteria isolated from a suppressive soil was evaluated for in vitro antagonistic activity against X. campestris, and 92 isolates (44.6%) were able to inhibit its growth. Among the 92 isolates evaluated in the double‐layer technique, 51 (55.43%) inhibited Xcc growth on the inhibition tests with cell‐free filtrates (CFF) in liquid medium. Thirteen of these isolates presented 50% or more growth inhibition, and five isolates presented 100% growth inhibition of Xcc. The CFF of the isolate TCDT‐08, which belongs to the Paenibacillus genus, was used for in vivo tests with kale crops. The artificial inoculation of kale with Xcc‐629IBSBF pretreated with CFF from the isolate TCDT‐08 demonstrated that the bacterium loses the ability of colonizing kale and of causing black rot. A Paenibacillus sp. isolate has strong inhibitory activity against X. campestris pv. campestris, and further studies can result in the use of this isolate to protect kale from Xcc infection.  相似文献   
4.
The diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae), is one of the most destructive cosmopolitan insect pests of brassicaceous crops. It was the first crop insect reported to be resistant to DDT and now, in many crucifer producing regions, it has shown significant resistance to almost every synthetic insecticide applied in the field. In certain parts of the world, economical production of crucifers has become almost impossible due to insecticidal control failures. Consequently, increased efforts worldwide have been undertaken to develop integrated pest management (IPM) programs, principally based on manipulation of its natural enemies. Although over 130 parasitoid species are known to attack various life stages of DBM, most control worldwide is achieved by relatively few hymenopteran species belonging to the ichneumonid genera Diadegma and Diadromus, the braconid genera Microplitis and Cotesia, and the eulophid genus Oomyzus. DBM populations native to different regions have genetic and biological differences, and specific parasitoid strains may be associated with the specific DBM strains. Therefore, accurate identification based on genetic studies of both host and parasitoid is of crucial importance to attaining successful control of DBM through inoculative or inundative releases. Although parasitoids of DBM larvae and pupae are currently its principal regulators, bacteria-derived products (e.g., crystal toxins from Bacillus thuringiensis) and myco-insecticides principally based on Zoophthora radicans and Beauveria bassiana are increasingly being applied or investigated for biological control. Viruses, nematodes and microsporidia also have potential as biopesticides for DBM. When an insect pest is exposed to more than one mortality factor, there is the possibility of interactions that can enhance, limit, or limit and enhance the various aspects of effectiveness of a particular control tactic. This paper reviews the effectiveness of various parasitoids and entomopathogens against DBM, interactions among them, and their possible integration into modern IPM programs.  相似文献   
5.
A series of RAPD markers generated by a single 10-mer primer were analyzed by hybridization to amplified and genomic DNA and by sequencing in two Brassica species. Primer B18 produced different profiles of nine major bands each in both Brassica nigra (B genome) and B. napus (AC genomes). Cloning and sequencing of five B18 B. nigra amplification products revealed that they were all unrelated to each other. Only limited stretches of high similarity of up to 69 nucleotides were shared by some of these clones. Hybridization to genomic DNA indicated that only two corresponded to a highly repeated sequence, whereas the rest were low copy sequences. In spite of their lack of homology, when these clones were used as probes to amplified B. nigra DNA, they hybridized to multiple bands in the profile. Hybridization of B. nigra clones for bands of similar sizes in both species, failed to hybridize in B. napus, revealing lack of homology between the DNAs of the two species. Because of these inconsistencies, it is concluded that RAPD markers, although useful for genetical studies, should be used with caution specially when basing homology on cross-hybridization and fragment sizes.  相似文献   
6.
Abstract:  The diamondback moth (DBM), Plutella xylostella (L.) (Lep., Plutellidae), is one of the most destructive insect pests of crucifers worldwide. It was the first crop insect reported to be resistant to DDT and now in many crucifer-producing regions it has shown significant resistance to almost every insecticide applied in field including biopesticides such as crystal toxins from Bacillus thuringiensis and spinosyns from Saccharopolyspora spinosa . In certain parts of the world, economical production of crucifers has become almost impossible because of its resistance to insecticides and resulting control failure. A coordinated resistance management program needs to be implemented with the involvement of pesticide industry, local pesticide regulatory authorities, scientists and farmers. The judicious use of chemicals in conjunction with other control measures (e.g. biological control agents, resistant varieties, proper fertilization rates) is the best way to manage DBM and other pests of cruciferous crops. Introduction of glucosinolate-sulphatase inhibitors as plant-incorporated-products or sprayable material may also lead to a novel pest management strategy.  相似文献   
7.
8.
Tolerance to herbivory is an adaptation that promotes regrowth and maintains fitness in plants after herbivore damage. Here, we hypothesized that the effect of competition on tolerance can be different for different genotypes within a species and we tested how tolerance is affected by competitive regime and damage type. We inflicted apical or leaf damage in siblings of 29 families of an annual plant Raphanus raphanistrum (Brassicaceae) grown at high or low competition. There was a negative correlation of family tolerance levels between competition treatments: plant families with high tolerance to apical damage in the low competition treatment had low tolerance to apical damage in the high competition treatment and vice versa. We found no costs of tolerance, in terms of a trade‐off between tolerance to apical and leaf damage or between tolerance and competitive ability, or an allocation cost in terms of reduced fitness of highly tolerant families in the undamaged state. High tolerance bound to a specific competitive regime may entail a cost in terms of low tolerance if competitive regime changes. This could act as a factor maintaining genetic variation for tolerance.  相似文献   
9.
When newly hatched larvae of P. rapae were transferred to cowpea foliage, they readily accepted this non-host as food, whereas later instars that had fed on cabbage rejected cowpea. However, when cowpea leaf discs were treated with aqueous extracts of cabbage foliage, they were accepted by cabbage-reared larvae. Experiments were conducted to determine whether larvae reared on one host plant would be stimulated to feed by extracts of other hosts. Larvae reared on Brassica juncea, Cleome spinosa, Tropaeolum majus, Sinapis alba, Alliaria petiolata, Barbarea vulgaris and cabbage (Brassica oleracea) were offered extracts of each of the other host plants on cowpea discs in choice assays. Larvae were generally stimulated to feed by extracts of all the alternate hosts, but quantitative differences in consumption occurred. In most cases, levels of discrimination between treatment and control cowpea discs showed no significant preference for extracts of the previously experienced plant. Since the test plants (and their extracts) contain glucosinolates of widely different structures, a general addiction to glucosinolates was suggested. A single glucosinolate, sinigrin, was sufficient to elicit feeding by cabbage-reared larvae. The time required for individual neonates to become addicted to glucosinolates as they fed on cabbage, as measured by refusal of cowpea, varied from 6 to 30 hours. Bioassays of cowpea extracts failed to show any deterrent activity and, therefore, supported the conclusion that addiction to glucosinolates is responsible for the fixation of P. rapae larvae on their host plants.  相似文献   
10.
A population of the diamondback moth Plutella xylostella (L.) (Lepidoptera: Plutellidae) (DBM) was recently found to infest sugar snap- and snowpeas in the Rift Valley in Kenya, causing heavy damage. The influence of this host shift on host location preferences of two parasitoids was investigated: The indigenous Diadegma mollipla (Holmgren) regarded as a relative generalist, and Diadegma semiclausum(Hellen), regarded as highly specific to DBM. The attractiveness of different odour sources was compared for the two parasitoid species using a Y-tube olfactometer using naïve females. D. mollipla was not significantly attracted to any cabbage related odours but showed a significant preference for the DBM infested pea plant when tested against clean air. D. semiclausum was highly attracted to the undamaged cabbage plant and odours related to cabbage. On the other hand, peas infested with DBM, showed no attractiveness to this parasitoid. The results showed that specialisation of D. semiclausum is mediated by host plant signals, associated with crucifers, which are not encountered in DBM feeding on peas. For D. mollipla,although a frequent parasitoid on DBM in crucifers, volatiles emitted by these plants might not be used as primary cues for host location. This species may respond largely to chemicals yet unknown and associated with a variety of plant-herbivore interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号