首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
  2023年   1篇
  2020年   2篇
  2018年   1篇
  2017年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2007年   1篇
  2001年   1篇
  2000年   2篇
  1987年   1篇
  1986年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
The larger distribution area of asexuals compared with their sexual relatives in geographical parthenogenesis (GP) scenarios has been widely attributed to the advantages of uniparental reproduction and polyploidy. However, potential disadvantages of sexuals due to their breeding system have received little attention so far. Here, we study the breeding system of five narrowly distributed sexual lineages of Ranunculus notabilis s.l. (R. auricomus complex) and its effects on outcrossing, inbreeding, female fitness, and heterozygosity. We performed selfing and intra‐ and interlineage crossings by bagging 481 flowers (59 garden individuals) followed by germination experiments. We compared seed set and germination rates, and related them to genetic distance and genome‐wide heterozygosity (thousands of RADseq loci). Selfings (2.5%) unveiled a significantly lower seed set compared with intra‐ (69.0%) and interlineage crossings (69.5%). Seed set of intra‐ (65%) compared to interpopulation crossings (78%) was significantly lower. In contrast, all treatments showed comparable germination rates (32%–43%). Generalized linear regressions between seed set and genetic distance revealed positive relationships in general and between lineages, and a negative one within lineages. Seed set was the main decisive factor for female fitness. Germination rates were not related to genetic distance at any level, but were positively associated with heterozygosity in interlineage crossings. Experiments confirmed full crossability and predominant outcrossing among sexual R. notabilis s.l. lineages. However, up to 5% (outliers 15%–31%) of seeds were formed by selfing, probably due to semi‐self‐compatibility in a multi‐locus gametophytic SI system. Less seed set in intrapopulation crossings, and higher seed set and germination rates from crossings of genetically more distant and heterozygous lineages (interlineage) indicate negative inbreeding and positive outbreeding effects. In GP scenarios, sexual species with small and/or isolated populations can suffer from decreased female fitness due to their breeding system. This factor, among others, probably limits range expansion of sexuals.  相似文献   
2.
In forest tree species, the reproductive phase is reached only after many years or even decades of juvenile growth. Different early flowering systems based on the genetic transfer of heat‐shock promoter driven flowering‐time genes have been proposed for poplar; however, no fertile flowers were reported until now. Here, we studied flower and pollen development in both HSP::AtFT and wild‐type male poplar in detail and developed an optimized heat treatment protocol to obtain fertile HSP::AtFT flowers. Anthers from HSP::AtFT poplar flowers containing fertile pollen grains showed arrested development in stage 12 instead of reaching phase 13 as do wild‐type flowers. Pollen grains could be isolated under the binocular microscope and were used for intra‐ and interspecific crossings with wild‐type poplar. F1‐seedlings segregating the HSP::AtFT gene construct according to Mendelian laws were obtained. A comparison between intra‐ and interspecific crossings revealed that genetic transformation had no detrimental effects on F1‐seedlings. However, interspecific crossings, a broadly accepted breeding method, produced 47% seedlings with an aberrant phenotype. The early flowering system presented in this study opens new possibilities for accelerating breeding of poplar and other forest tree species. Fast breeding and the selection of transgene‐free plants, once the breeding process is concluded, can represent an attractive alternative even under very restrictive regulations.  相似文献   
3.
得到关于具有无穷时滞的Volterra-Lotka积分微分方程组全体正解关于正平衡解具有相交性的一组充分条件和两个推论。  相似文献   
4.
Experimental examination of reproductive isolation is the first step in understanding hybridization processes. Here, we studied preferential fertilization between 2 cupped oyster taxa, Crassostrea angulata and Crassostrea gigas, as a potential prezygotic reproductive isolation. Early examination of sperm competition is now possible by molecular analysis of oyster embryos. This avoids the confounding effect of differential mortality during the larval stage. Six hundred embryos were sampled from 2 crosses. Three microsatellite loci were enough to determine without ambiguity the taxa of contributing sires of embryos. No evidence of preferential fertilization between gametes from the same taxa was shown. A significantly higher contribution of the C. gigas males was revealed with the C. angulata females, but not with the C. gigas females, which might suggest early heterosis or interaction differences between gametes. In the light of these results, natural hybridization between both taxa can be expected in cases of their geographical coexistence, as in the Southern European populations in which both taxa are in contact as a result of aquaculture development. Received May 6, 2000; accepted March 6, 2001.  相似文献   
5.
6.
Canopy bridges are increasingly used to reduce fragmentation in tropical habitats yet monitoring of their impact on the behavior of primates remains limited. The Javan slow loris (Nycticebus javanicus) is endemic to Java, Indonesia, where the species most often occurs in human-dominated, highly patchy landscapes. Slow lorises cannot leap, are highly arboreally adapted, and are vulnerable on the ground. To increase arboreal connectivity, as part of a long-term conservation project in Cipaganti, West Java, we built and monitored seven slow lorises bridges of two types—waterline or rubber—and monitored their use by seven adult individuals from 2016 to 2017. Motion triggered camera traps collected data for 195 ± standard deviation (SD) 85 days on each bridge. We collected 341.76 hr (179.67 hr before and 162.09 hr after the installation of bridges) of behavioral and home range data via instantaneous sampling every 5 min, and terrestrial behavior (distance and duration of time spent on the ground) via all occurrences sampling. We found that slow lorises used bridges on average 12.9 ± SD 9.7 days after their installment mainly for traveling. Slow lorises showed a trend toward an increase in their home range size (2.57 ha before, 4.11 ha after; p = 0.063) and reduced ground use (5.98 s/hr before, 0.43 s/hr; p = 0.063) after implementation of bridges. Although the number of feeding trees did not change, new feeding trees were included in the home range, and the proportion of data points spent traveling and exploring significantly decreased (p = 0.018). Waterline bridges serve a purpose to irrigate the crops of local farmers who thus help to maintain the bridges, and also ascribe value to the presence of slow lorises. Other endemic mammal species also used the bridges. We advocate the use and monitoring of artificial canopy bridges as an important supplement for habitat connectivity in conservation interventions.  相似文献   
7.
In the current context of biodiversity loss through habitat fragmentation, the effectiveness of wildlife crossings, installed at great expense as compensatory measures, is of vital importance for ecological and socio‐economic actors. The evaluation of these structures is directly impacted by the efficiency of monitoring tools (camera traps…), which are used to assess the effectiveness of these crossings by observing the animals that use them. The aim of this study was to quantify the efficiency of camera traps in a wildlife crossing evaluation. Six permanent recording video systems sharing the same field of view as six Reconyx HC600 camera traps installed in three wildlife underpasses were used to assess the exact proportion of missed events (event being the presence of an animal within the field of view), and the error rate concerning underpass crossing behavior (defined as either Entry or Refusal). A sequence of photographs was triggered by either animals (true trigger) or artefacts (false trigger). We quantified the number of false triggers that had actually been caused by animals that were not visible on the images (“false” false triggers). Camera traps failed to record 43.6% of small mammal events (voles, mice, shrews, etc.) and 17% of medium‐sized mammal events. The type of crossing behavior (Entry or Refusal) was incorrectly assessed in 40.1% of events, with a higher error rate for entries than for refusals. Among the 3.8% of false triggers, 85% of them were “false” false triggers. This study indicates a global underestimation of the effectiveness of wildlife crossings for small mammals. Means to improve the efficiency are discussed.  相似文献   
8.
Phenology allows organisms to overcome seasonally variable conditions through life‐cycle adjustment. Changes in phenology can drastically modify the evolutionary trajectory of a population, while a shift in the reproductive time may cause allochronic differentiation. The hypothesis of heritable reproductive time was experimentally tested, by studying a unique population of the pine processionary moth Thaumetopoea pityocampa (Den. & Schiff.) which has a shifted phenology, and however co‐occurs with the typical population following the classical life cycle. When populations of both types were reared under controlled conditions, the reproductive time was maintained asynchronous, as observed in the field. The shifted population was manipulated in the laboratory to reproduce later than usual, yet the offspring emerged in the next year at the expected dates thus “coming back” to the usual cycle. Hybrids from crosses performed between the 2 populations showed an intermediate phenology. From the emergence times of parents and offspring, a high heritability of the reproductive time (h = 0.76) was observed. The offspring obtained from each type of cross was genetically characterized using microsatellite markers. Bayesian clustering analysis confirmed that hybrids can be successfully identified and separated from the parental genetic classes by genotyping. Findings support the hypothesis that, for this particular population, incipient allochronic speciation is due to a heritable shift in the reproductive time that further causes assortative mating and might eventually cause ecological adaptation/maladaptation in response to environmental changes.  相似文献   
9.
10.
We investigated the risk associated with crossing the Sahara Desert for migrating birds by evaluating more than 90 journeys across this desert by four species of raptors (osprey Pandion haliaetus, honey buzzard Pernis apivorus, marsh harrier Circus aeruginosus and Eurasian hobby Falco subbuteo) recorded by satellite telemetry. Forty per cent of the crossings included events of aberrant behaviours, such as abrupt course changes, slow travel speeds, interruptions, aborted crossings followed by retreats from the desert and failed crossings due to death, indicating difficulties for the migrants. The mortality during the Sahara crossing was 31 per cent per crossing attempt for juveniles (first autumn migration), compared with only 2 per cent for adults (autumn and spring combined). Mortality associated with the Sahara passage made up a substantial fraction (up to about half for juveniles) of the total annual mortality, demonstrating that this passage has a profound influence on survival and fitness of migrants. Aberrant behaviours resulted in late arrival at the breeding grounds and an increased probability of breeding failure (carry-over effects). This study also demonstrates that satellite tracking can be a powerful method to reveal when and where birds are exposed to enhanced risk and mortality during their annual cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号