首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
  2022年   1篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2006年   5篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1993年   1篇
  1992年   1篇
  1978年   1篇
排序方式: 共有19条查询结果,搜索用时 734 毫秒
1.
BACKGROUND AND AIMS: Late-acting self-incompatibility (LSI), in which selfed flowers fail to form fruits despite apparently successful growth of the pollen tubes to the ovules, is a contentious and still poorly understood phenomenon. Some studies have indicated pollen tube-pistil interactions, and major gene control. Others favour an early acting inbreeding depression explanation. METHODS: Experimental pollinations, including selfs (in a subsample of which the style was cut before pollen tubes reached the ovary), chase self/cross-pollinations, crosses, and mixed self/cross-pollinations were used to study floral/pistil longevity and effect on fruit set and seed yield in two Ceiba species known to have LSI. RESULTS: Self-pollinations, including those with a cut style, had extended floral longevity compared with unpollinated flowers. Chase pollinations in which cross-pollen was applied up to 3 h after selfing set fruits, but with reduced seed set compared with crosses. Those with cross-pollen applied at 4 and 8 h after self-pollination all failed to set fruits. Flowers subjected to 1 : 1 and 2 : 1 self/cross-pollinations all produced fruits but again with a significantly lower seed set compared with crosses. CONCLUSIONS: Extended floral longevity initiated with self-pollen tubes growing in the style indicates some kind of pollen tube-pistil interaction. Fruit set only in chase pollinations up to 3 h implies that self-pollen tubes either grow more slowly in the style or penetrate ovules more slowly on arrival at the ovary compared with cross-tubes. This agrees with previous observations indicating that the incidence of penetrated ovules is initially lower in selfed compared with crossed pistils. However, the low seed yield from mixed pollinations indicates that self- and cross-pollen tubes arrive at the ovary and penetrate ovules more or less simultaneously. Possible explanations for these discordant results are discussed.  相似文献   
2.
3.
We assessed natural rates of floral abortion in four common mangrove species from northern Australia and subsequently manipulated pollination experimentally. Sonneratia alba J. Smith exhibited the highest rate of fruit set of the four species (23%), indicating this mangrove was best able to utilise the natural pollination opportunities provided. Fruit set in S. alba appeared, however, to be pollinator limited, as large increases in fruit set occurred after manual cross-pollination of flowers. Avicennia marina (Forsk.) Vierh. had the highest rate of natural pollination, but fruit set was lower (15%) and appeared to be impeded by resource limitations. Although a range of insects visited Ceriops australis (C.T. White) Ballment, T.J. Sm & Stoddart, the rate of fruit set was low (3%) and the capacity for flower fertilisation limited, despite evidence of autogamy in this species. There was an indication of both resource and pollinator limitation in C. australis. Rhizophora stylosa Griff. exhibited limited fruit set (0.5%), possibly due to limiting maternal resources and the lack of adaptation of flowers to either animal or wind pollination. Large increases in fruit set were recorded after manual cross-pollination of R. stylosa flowers. R. stylosa and C. australis, characterised by resource rich propagules with long periods of development, both aborted a large proportion of propagules during the fruit maturation process.  相似文献   
4.
Annual alpine species rely on selfing rather than on cross-pollination for successful reproduction. However, insect visits may occasionally cause cross-pollination not only within but also between closely related species. The aim of this study was to investigate four species of Euphrasia for their efficiency in spontaneous selfing and their success in intra- and interspecific crossing. We used the seed sets that followed spontaneous selfing and artificial cross- and selfpollination to measure the breeding success. We compared the morphological characters of species and hybrids and determined their ploidy level using flow cytometry. We verified the hybridogenous origin of plants resulting from interspecific crosses using RAPD banding patterns. While spontaneous seed set was high in the two small-flowered species, seed set in the large-flowered species was small and affected by external circumstances. We obtained F1 and F2 hybrids from interspecific crosses of two diploid species and detected polyploid individuals in both generations.  相似文献   
5.
梨自花与异花授粉后花粉胞内游离Ca2+分布的变化   总被引:11,自引:2,他引:9  
利用低温荧光标记和激光共聚焦显微技术研究了砂梨自花与异花授粉后至花粉萌发期间花粉胞内游离Ca^2 分布的变化过程。结果表明亲和授粉后花粉萌发孔附近的Ca^2 浓度没有降低,但是随着授粉后时间的延长,萌发孔附近的Ca^2 梯度因花粉胞内游离Ca^2 浓度整体增大而消失,并又随后胞内游离Ca^2 浓度又不均匀下降,至萌发前在萌发孔附近的Ca^2 梯度又重新建立,而不亲和花粉则没有这种特征性的变化。研究还表明Ca^2 参与梨自交不亲和反应过程中花粉与柱头识别的初始反应和梨花粉的萌发过程。  相似文献   
6.
Maize is one of the main crops worldwide and an increasing number of genetically modified (GM) maize varieties are cultivated and commercialized in many countries in parallel to conventional crops. Given the labeling rules established e.g. in the European Union and the necessary coexistence between GM and non-GM crops, it is important to determine the extent of pollen dissemination from transgenic maize to other cultivars under field conditions. The most widely used methods for quantitative detection of GMO are based on real-time PCR, which implies the results are expressed in genome percentages (in contrast to seed or grain percentages). Our objective was to assess the accuracy of real-time PCR based assays to accurately quantify the contents of transgenic grains in non-GM fields in comparison with the real cross-fertilization rate as determined by phenotypical analysis. We performed this study in a region where both GM and conventional maize are normally cultivated and used the predominant transgenic maize Mon810 in combination with a conventional maize variety which displays the characteristic of white grains (therefore allowing cross-pollination quantification as percentage of yellow grains). Our results indicated an excellent correlation between real-time PCR results and number of cross-fertilized grains at Mon810 levels of 0.1–10%. In contrast, Mon810 percentage estimated by weight of grains produced less accurate results. Finally, we present and discuss the pattern of pollen-mediated gene flow from GM to conventional maize in an example case under field conditions.  相似文献   
7.
The genusScrophularia in the Iberian Peninsula and Balearic Islands comprises two sections,Scrophularia andCanina G. Don. Analyses were carried out on flower production, flower duration and their sexual phases, pollen and nectar production together with observations on their pollinators. Nectar production is correlated with corolla size and pollen production with anther size. The taxa of sect.Scrophularia show greater nectar and pollen production than those of sect.Canina. Also, those of the first section produce more ovules per ovary than those of the second group, production being correlated with the ovary size.Some observations on floral and reproductive biology in some species ofScrophularia from the Iberian Peninsula and the Balearic Islands. I.  相似文献   
8.
The relative success of fruit from paired self- and cross-pollinations was examined in Phormium tenax when the contrasted pollinations were separated by different distances on the same and different inflorescences. We determined whether the retention of selfed fruits differed from that of crossed fruits and whether it depended on the level of competition with crossed fruit, the number of seeds per fruit, and/or the presence of earlier developing fruit. We found that the success of selfed fruits is determined by the degree of competition with crossed fruits and may be an expression of self-incompatibility. Competition-dependence of the abscission of selfed flowers has not been documented previously. It is parallel to cryptic self-incompatibility in which individual self-pollen grains are not as successful as cross-pollen when competing on the same pistil. The competition-dependent abscission of self-pollinations considered here, however, operates at the level of whole flowers. The phenomenon of competition-dependent abscission of selfed flowers in P. tenax also has implications for the measurement and interpretation of self-incompatibility in other species. Self-incompatibility is a quantitative phenomenon. The facultative success of selfing shows that the effective strength of self-incompatibility can be highly susceptible to the conditions of competition under which it is measured. The competition-dependent abscission of selfed flowers allows a high level of outcrossing to be achieved while it assures seed set when pollinations are scarce. Several other causes of intermediate selfing frequencies can also be explained by this “best-of-both-worlds” hypothesis.  相似文献   
9.
大花蕙兰与墨兰杂交结实率研究初报   总被引:2,自引:0,他引:2  
取3个大花蕙兰品种与1个墨兰品种进行自交与杂交。共设计10个组合,成功获得4个杂交组合;共授粉257朵花,成功获得21个果荚,结实率为8.1%。大花蕙兰与墨兰杂交正反交的结实率差异不大。各组合果荚生长曲线走势大致相同,授粉后10~12 d,子房开始膨大,并于60~80 d趋于平稳。大部分落果于授粉后30d内发生,部分于生长中后期黄化脱落,双亲遗传物质的不协调性及栽培管理可能是重要影响因素。  相似文献   
10.
Mechanisms and evolution of deceptive pollination in orchids   总被引:1,自引:0,他引:1  
The orchid family is renowned for its enormous diversity of pollination mechanisms and unusually high occurrence of non-rewarding flowers compared to other plant families. The mechanisms of deception in orchids include generalized food deception, food-deceptive floral mimicry, brood-site imitation, shelter imitation, pseudoantagonism, rendezvous attraction and sexual deception. Generalized food deception is the most common mechanism (reported in 38 genera) followed by sexual deception (18 genera). Floral deception in orchids has been intensively studied since Darwin, but the evolution of non-rewarding flowers still presents a major puzzle for evolutionary biology. The two principal hypotheses as to how deception could increase fitness in plants are (i) reallocation of resources associated with reward production to flowering and seed production, and (ii) higher levels of cross-pollination due to pollinators visiting fewer flowers on non-rewarding plants, resulting in more outcrossed progeny and more efficient pollen export. Biologists have also tried to explain why deception is overrepresented in the orchid family. These explanations include: (i) efficient removal and deposition of pollinaria from orchid flowers in a single pollinator visit, thus obviating the need for rewards to entice multiple visits from pollinators; (ii) efficient transport of orchid pollen, thus requiring less reward-induced pollinator constancy; (iii) low-density populations in many orchids, thus limiting the learning of associations of floral phenotypes and rewards by pollinators; (iv) packaging of pollen in pollinaria with limited carry-over from flower to flower, thus increasing the risks of geitonogamous self-pollination when pollinators visit many flowers on rewarding plants. All of these general and orchid-specific hypotheses are difficult to reconcile with the well-established pattern for rewardlessness to result in low pollinator visitation rates and consequently low levels of fruit production. Arguments that deception evolves because rewards are costly are particularly problematic in that small amounts of nectar are unlikely to have a significant effect on the energy budget of orchids, and because reproduction in orchids is often severely pollen-, rather than resource-limited. Several recent experimental studies have shown that deception promotes cross-pollination, but it remains unknown whether actual outcrossing rates are generally higher in deceptive orchids. Our review of the literature shows that there is currently no evidence that deceptive orchids carry higher levels of genetic load (an indirect measure of outcrossing rate) than their rewarding counterparts. Cross-pollination does, however, result in dramatic increases in seed quality in almost all orchids and has the potential to increase pollen export (by reducing pollen discounting). We suggest that floral deception is particularly beneficial, because of its promotion of outcrossing, when pollinators are abundant, but that when pollinators are consistently rare, selection may favour a nectar reward or a shift to autopollination. Given that nectar-rewardlessness is likely to have been the ancestral condition in orchids and yet is evolutionarily labile, more attention will need to be given to explanations as to why deception constitutes an 'evolutionarily stable strategy'.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号