首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  6篇
  2015年   1篇
  2013年   1篇
  2006年   1篇
  2002年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
N‐cadherin is a member of the Ca2+‐dependent cell adhesion molecules and plays an important role in the assembly of the adherens junction in chicken cardiomyocytes. In addition to being present at the cell‐cell junction, N‐cadherin is associated with costameres in extrajunctional regions. The significance of the N‐cadherin‐associated costameres and whether catenins are components of costameres in chicken cardiomyocytes are not known. In this study, double‐labeling immunofluorescence microscopy was used to determine the extrajunctional distribution of both N‐cadherin and its cytoplasmic associated proteins, α‐ and β‐catenins, and their relationship to myofibrillar Z‐disc α‐actinin. N‐cadherin, α‐, and β‐catenins were all found to be present at the extrajunctional region and, in some cases, were codistributed with myofibrillar α‐actinin exhibiting a periodic staining pattern. Confocal microscopy confirmed that both N‐cadherin and β‐catenin colocalized with peripheral myofibrillar α‐actinin on the dorsal surface of cardiomyocytes as components of the costameres. Intracellular application of antibodies specific for the cytoplasmic portions of N‐cadherin, α‐, and β‐catenin, either by electroporation or microinjection, resulted in myofibril disorganization and disassembly. These results suggest the existence of N‐cadherin/catenin‐based costameres in the dorsal surface of cultured chicken cardiomyocytes in addition to the integrin/vinculin‐based costameres found in the ventral surface and indicate that the former set of costameres is essential for cardiac myofibrillogenesis. J. Cell. Biochem. 75:93–104, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   
2.
The aim of this study was to provide morphological evidence for the presence of rho A protein in developing cardiomyocytes and to investigate its possible role in myofibrillogenesis. Immunostaining with a monoclonal anti-rho antibody gave a diffuse pattern in the cytosol of cultured cardiomyocytes. Introduction of C3 exoenzyme into the cells by electroporation was used to inactivate rho A protein by ADP-ribosylation. An immunostaining with anti-vinculin, anti-talin, and anti-integrin antibodies showed the focal adhesions in electroporation control cardiomyocytes to be evenly distributed in the ventral sarcolemma; the costameric structure was also detected using these antibodies. In contrast, in C3 exoenzyme treated cells, focal adhesions were disassembled and costamere were absent; in addition, β-actin-positive, non-striated fibrils were lost and assembly of M-protein, titin, and α-actinin into myofibrils was poor, as shown by diffuse and filamentous staining pattern. C3 exoenzyme treatment had a less marked effect on mature cardiomyocytes than on immature cells; in this case, cells became distorted and few myofibrils were seen. The intensity of anti-phosphotyrosine antibody staining of the focal adhesion was also decreased or diffuse in C3 exoenzyme-treated cardiomyocytes, suggesting dephosphorylation of focal adhesion components. We therefore conclude that small G protein rho A plays an important role in myofibril assembly in cardiomyocytes. J. Cell. Biochem. 66:43–53, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
3.
During heart development, the generation of myocardial-specific structural and functional units including sarcomeres, contractile myofibrils, intercalated discs, and costameres requires the coordinated assembly of multiple components in time and space. Disruption in assembly of these components leads to developmental heart defects. Immunofluorescent staining techniques are used commonly in cultured cardiomyocytes to probe myofibril maturation, but this ex vivo approach is limited by the extent to which myocytes will fully differentiate in culture, lack of normal in vivo mechanical inputs, and absence of endocardial cues. Application of immunofluorescence techniques to the study of developing mouse heart is desirable but more technically challenging, and methods often lack sufficient sensitivity and resolution to visualize sarcomeres in the early stages of heart development. Here, we describe a robust and reproducible method to co-immunostain multiple proteins or to co-visualize a fluorescent protein with immunofluorescent staining in the embryonic mouse heart and use this method to analyze developing myofibrils, intercalated discs, and costameres. This method can be further applied to assess cardiomyocyte structural changes caused by mutations that lead to developmental heart defects.  相似文献   
4.
Cephalopod skin is soft, flexible, and produces rapid color changes for camouflage and signaling primarily by regulating the shapes of its numerous chromatophore organs. Each chromatophore has 10–30 radial muscle cells, termed fibers, under central nervous system control. Each fiber contains myofilaments that contract in concert to stretch the pigment‐containing cell from its punctate, spherical state to a fully expanded thin disk of color. Expansion occurs in less than one second and can result in a 14‐fold expansion in pigment cell diameter. We investigated the anchoring mechanism of radial muscle fibers that expand pigment cells in the longfin squid, Doryteuthis (Loligo) pealeii. The proximal Active Zone of a radial muscle fiber adheres to the pigment cell within an ensheathing sinus. The distal portion forms terminal arbors, thereby increasing the surface area, to adhere it to the dermal extracellular matrix (ECM). While the muscle fiber is attached to the pigment cell with haptosomes, the remainder of the fiber is adhered to the surrounding basal lamina (part of the ECM) by numerous, closely spaced, small costamere‐like projections. Branching of the radial muscle fiber termini and the costamere‐like attachments are key anatomical specializations that anchor the radial muscle fibers in the pliable skin while allowing the freedom of movement required for large changes in pigment cell diameter. We postulate that these features may be relevant for the development of soft actuation models in materials science.  相似文献   
5.
Costameres, vinculin-containing structures found in skeletal and cardiac muscle, are thought to anchor the Z-discs of the peripheral myofibrils to the sarcolemma. Several lines of evidence indicate that two different sets of costameres, integrin- and N-cadherin-based, are present in cardiac muscles. In this study, immunoblot analysis was used to study the expression of N-cadherin, alpha-catenin, beta-catenin, vinculin, talin, and laminin in rat cardiac muscles at embryonic days 15 and 19, the day of birth (postnatal day 0), postnatal weeks 1, 2, 3, and 4, and in the adult. Double immunofluorescence microscopy was performed to study the spatial and temporal distribution of these two sets of costameres in rat cardiomyocytes. Costameric staining for N-cadherin, codistributed with beta-catenin, was strong from embryonic day 15 up to postnatal week 2, gradually decreased after postnatal week 3, and was undetectable at postnatal week 4 and in the adult. Confocal microscopy showed that N-cadherin colocalized with alpha-actinin at cortical myofibrils. Double-labeling of beta-catenin and talin indicated the coexistence of N-cadherin/catenin- and integrin/talin-based costameres in rat cardiac muscle. Although beta-catenin and vinculin were co-localized at the costamere of cardiomyocytes from embryonic day 15 to postnatal week 3, staining for beta-catenin or talin was mutually exclusive at all stages examined. These results demonstrate the simultaneous, but mutually exclusive, existence of N-cadherin/catenin- and integrin/talin-based costameres in rat cardiomyocytes between late embryonic stages and postnatal week 3, while only integrin/talin-based costameres were found in adult rats. The N-cadherin/catenin-based costameres in rat cardiac muscles may play a role in myofibrillogenesis similar to that of their counterparts in cultured cardiomyocytes.  相似文献   
6.
Extracellular matrix (ECM) molecules play critical roles in muscle function by participating in neuromuscular junction (NMJ) development and the establishment of stable, cytoskeleton‐associated adhesions required for muscle contraction. Matrix metalloproteinases (MMPs) are neutral endopeptidases that degrade all ECM components. While the role of MMPs and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs), has been investigated in many tissues, little is known about their role in muscle development and mature function. TIMP‐2 ?/? mice display signs of muscle weakness. Here, we report that TIMP‐2 is expressed at the NMJ and its expression is greater in fast‐twitch (extensor digitorum longus, EDL) than slow‐twitch (soleus) muscle. EDL muscle mass is reduced in TIMP‐2?/? mice without a concomitant change in fiber diameter or number. The TIMP‐2?/? phenotype is not likely due to increased ECM proteolysis because net MMP activity is actually reduced in TIMP‐2?/? muscle. Most strikingly, TIMP‐2 colocalizes with β1 integrin at costameres in the wild‐type EDL and β1 integrin expression is significantly reduced in TIMP‐2?/? EDL. We propose that reduced β1 integrin in fast‐twitch muscle may be associated with destabilized ECM‐cytoskeletal interactions required for muscle contraction in TIMP‐2?/? muscle; thus, explaining the muscle weakness. Given that fast‐twitch fibers are lost in muscular dystrophies and age‐related sarcopenia, if TIMP‐2 regulates mechanotransduction in an MMP‐independent manner it opens new potential therapeutic avenues. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号