首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   738篇
  免费   63篇
  国内免费   24篇
  2024年   2篇
  2023年   8篇
  2022年   6篇
  2021年   12篇
  2020年   24篇
  2019年   24篇
  2018年   23篇
  2017年   26篇
  2016年   24篇
  2015年   23篇
  2014年   18篇
  2013年   71篇
  2012年   22篇
  2011年   13篇
  2010年   14篇
  2009年   62篇
  2008年   61篇
  2007年   64篇
  2006年   18篇
  2005年   31篇
  2004年   24篇
  2003年   14篇
  2002年   20篇
  2001年   24篇
  2000年   17篇
  1999年   16篇
  1998年   15篇
  1997年   19篇
  1996年   17篇
  1995年   11篇
  1994年   9篇
  1993年   10篇
  1992年   7篇
  1991年   10篇
  1990年   6篇
  1989年   12篇
  1988年   26篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有825条查询结果,搜索用时 78 毫秒
1.
2.
Nitrogen dynamics in two antarctic streams   总被引:1,自引:1,他引:0  
The many glacier meltwater streams of southern Victoria Land flow through catchments where life forms are almost entirely microbial. Allochthonous inputs of nitrogen from two study streams near McMurdo Sound were derived mostly from the melting glaciers (ca. 100–200 mg N m–3) with some originating from N2-fixation by heterocystous cyanobacteria (max. 939 mg N m–2 year–1). Thirty to fifty per cent of the glacier derived N was dissolved organic N and a major proportion of this was identified as urea N which was utilised by the rich algal and cyanobacterial mats in the streams. A nutrient budget for Fryxell Stream was estimated, quantifying uptake of urea-N and dissolved inorganic N and the release of dissolved organic (non urea) and particulate N by the stream communities. An index of in-stream nitrogen processing, the Net Uptake Length Constant in these streams was compared with that from temperate climates and was found to be similar. Despite the influence of low temperatures on microbial activity (mean daily water temperature = 5 °C) nutrient removal rates from these antarctic streams are high because of the large standing stock of microbial biomass there.  相似文献   
3.
During the Norwegian Antarctic Expedition of 1984–1985, land parties worked in the area of Mühlig-Hofmannfjella and Gjelsvikfjella in Queen Maud Land (5° 20E, 1° 37W, 1000–1600 m a.s.l.). The nunataks in this area, which represents one of the climatic limits for terrestrial life on earth, is among those areas absorbing the highest quantity of shortwave radiation during a period of 24 h in summer. In spite of this the air temperature never, or very seldom, exceeds 0° C. The limiting factor for photosynthesis over most of the summer was water availability. Melt-water plays an important role in spring. During rest of the growth season, water from condensation is probably the most important water source for plants. On calm nights the rate of condensation during 6 h may reach 0.5 mm, which constitutes only 10%–30% of daily potential evapotranspiration. Plants situated in narrow clefts or shielded by stone blocks have the highest rate of potential photosynthesis. These locations are shielded from direct solar radiation most of the time, but the radiation from surrounding stone surfaces is higher than from the atmosphere and heat loss by turbulence is smaller than for exposed locations. These locations also probably have the highest rate of actual photosynthesis.  相似文献   
4.
Five cultures isolated from soil samples collected in Schirmacher oasis, Antarctica, have been identified as members of the familyMicrococcaceae, with 3 belonging to the genusMicrococcus and two toPlanococcus. The 3Micrococcus isolates (37R, 45R and 49R) were red-pigmented and h a d ∼ 75 mol% G + C in their DNA; they were identified asMicrococcus roseus. The twoPlanococcus isolates (30Y and Lz3OR) were yellow and orange in colour, and had 43.5 and 40.9 mol % G + C in their DNA respectively; they were identified asPlanococcus sp.  相似文献   
5.
Benthic grab samples, taken through core holes in sea-ice 1983, returned eight species of marine macrophytes which had associated fauna on at least one sample. A total of 24 animal taxa were found on these eight macrophytes. Phyllophora antarctica had a significantly greater biomass of attached fauna per unit of macrophyte biomass than any of the other seven species. It also had the greatest variety of epiphytic fauna (21 taxa). Phyllophora antarctica was the only macrophyte collected from comparatively protected Ellis Fjord, apart from filamentous algae, including Cladophora subsimplex and Geminocarpus austrogeorgiae, which were found in the most landward basin. It therefore played an important role in the ecology of the fjord. Palmaria decipiens was commonly collected at more exposed coastal sites and was dominant in Long Fjord, characterized here as intermediate in terms of water movement. Sixteen animal taxa were collected from this macrophyte with the greatest numbers being found in July and August. Only four animal taxa were collected from Iridaea cordata. The other five macrophyte species from which epiphytic animals were collected (Porphyra endiviifolium, Plocamium cartilagineum, Desmarestia menziesii, Himantothallus grandifolius and Cladophora subsimplex had animals associated with them on less than half the occasions when they were found.  相似文献   
6.
Antarctic terrestrial ecosystems are briefly described, with emphasis on Signy Island in the maritime antarctic region, and the McMurdo oasis, southern Victoria Land, and Vestfold Hills in the continental antarctic region.As the largest and best known coastal ice-free oasis, the Vestfold Hills contain excellent examples of terrestrial sublithic, epilithic, chasmoendolithic, epiphytic and terricolous algal communities, as well as epilithic, endolithic, and epiphytic lichen communities, and moss communities. Many of the numerous lakes support dense communities of aquatic algae.  相似文献   
7.
The distributions of trace elements in Shield, Ace and Burton Lakes of the Vestfold Hills were investigated. Three aspects are discussed as follows: (1) the vertical distribution of 18 trace elements in the three lakes, (2) the behaviour of trace elements in the lakes, especially that of manganese in Shield Lake, and (3) the origin of trace elements in antarctic saline lakes.High concentrations of trace elements were found in these coastal saline lakes, when compared to open ocean water.We suggest that the peak of total extractable manganese, found at 20 m in Shield Lake, was related to the oxic/anoxic water interface brought about by microbiological activity. Solid phase manganese at the upper oxic layer may have precipitated and then reached the anoxic boundary to be there reduced to manganese ion. This dissolved manganese may then have diffused upwards to be reoxidized to a solid form. This cycle, repeated many times, may have produced the Mn profile.The alkali, alkaline earth elements and Cl were probably derived from relict seawater. Other elements were present in similar concentration ratios to those of South Polar aerosols. Residence time calculations indicate that fallout of aerosol particles, themselves derived from various sources, is capable of accounting for the measured concentrations of some trace elements in Shield Lake. This source of trace elements may be significant for other antarctic saline lakes.  相似文献   
8.
The compositions of carotenoids, chlorophylls and lipids at four depths in Ace Lake have been determined as a means of studying the vertical zonation of species in the lake and for comparison with the lipids found in the bottom sediments. The four major species of phytoplankton found in the lake were identified by electron microscopy. The most abundant phytoplankter was Pyramimonas gelidicola McFadden (Chlorophyta, Prasinophyceae) which occurred in greatest numbers at 10 m, the base of the oxylimnion. The pigments and lipids at this depth were mainly derived from this alga. At 11 m (the top of the anoxylimnion) only traces of lipids and pigments attributable to P. gelidicola were found, indicating only limited settling of algal cells through to the anoxylimnion, at least in summer. The pigments at 11 m were dominated by bacteriochlorophylls c derived from green photosynthetic bacteria Chlorobium spp. These pigments were also abundant at 23 m suggesting the presence of intact bacterial cells which had settled out from higher in the water column. Major non-polar lipid classes in the sediments included sterols, alcohols, hydrocarbons and an unusual suite of very long-chain unsaturated ketones and esters which have not previously been reported from antarctic environments. Several novel compounds, not found previously in either sediments or organisms, are reported. These include tri- and tetra-unsaturated straight-chain C39 methyl ketones and C40 ethyl ketones and the methyl ester of a tetra-unsaturated straight-chain C36 fatty acid. The distributions of lipids in the sediment were markedly different from those in the water column indicating extensive bacterial degradation and recycling of labile lipids.  相似文献   
9.
Results of a seasonal study on biomass in an infralittoral population of Iridaea cordata from Terra Nova Bay (Ross Sea, Antarctica) are reported. Thalli were collected during the IX Italian Antarctic Expedition (austral summer 1993–94). The population studied is that living at depths of 4 to 6 m, where the highest density of plants occurred. The highest value of biomass (wet weight 3440 g m–2) was found at the beginning of summer. In that period 72.5% of biomass was from 128 specimens belonging to weight classes 8 (>16 to 32 g) to 10 (>64 g), corresponding to 13.4% of the population in numbers. Small (<1 g) and medium (1 to 8 g) specimens provided the remaining biomass of 5% and 22.5%, respectively. During the month of January, the number of heavy specimens decreased. At the end of that month biomass reached a minimum of 2225 g m–2. In February the biomass increased to 3169 g m –2, 72% of which was from 120 specimens belonging to weight classes 7 (>8 to 16 g) to 9 (>32 to 64 g), which numerically represented 18.5% of the population. Data showed that biomass depended mainly on the presence of large heavy specimens, even though they were always few in number. Moreover, the occurrence of such large thalli at the beginning of summer suggests that Iridaea cordata continues to grow during the long antarctic winter.  相似文献   
10.
The water status of the collembolan Cryptopygtus antarcticus (Willem) was investigated from April 1984 to December 1987 at Signy Island, maritime Antarctic, by monthly field sampling to determine body water content. Water content, expressed either as the weight of water per unit dry weight or as a proportion of fresh weight, exhibited both a seasonal cycle and an upward trend over the 44-month study, both of which were highly significant. On an annual basis, body water content was at a minimum (1.21 g g?1) in July and maximal (1.98 g g?1) in September, whilst over the entire study water contents increased from 1.3 to 2.0 g g?1 (or 57-66% of fresh weight) calculated from the fitted linear regression line. Field water contents were below those found for this species in culture (2.9-5.9 g g?1). Individual C. antarcticus survived experimental loss of 20% of their body water with a resultant significant rise in haemolymph osmolarity from 285 to 397 mOsm L?1 and there was no evidence of osmoregulation under the experimental conditions of 20 °C and 35% relative humidity. The cuticular permeability (mean conductance) of individual Collembola in dry air increased exponentially with temperature over the range D-45 °C (Q10= 2.0) showing no control of water loss. The physiological response of C. antarcticus suggests that it experiences water stress in its maritime Antarctic habitats with significant seasonal variations of body water content, which correlate with annual cycles of water availability. It is concluded that the significant rise in its mean body water content over the 44-month field study was associated with increased glacial ablation due to higher levels of irradiation and windspeed making available more liquid water. Analyses of climate records for Signy Island from 1947 to 1990 showed that mean monthly air temperature rose by 0.93 °C over this period and by 2.29 °C during the 1980s, both statistically significant increases. Mean monthly windspeeds also increased significantly during 1970–90, and it is suggested that this parameter is the primary climatic driving force behind the increase in glacial ablation during the last two decades. The field water status of species such as C. antarcticus may reflect changes in the patterns of atmospheric circulation, associated with the circumpolar vortex, through increased ozone depletion due to increased tropospheric concentrations of halocarbons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号