首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   5篇
  2023年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2001年   2篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
We investigated how the distribution pattern of eggs and larval on the host plant, Turritus glabra, was influenced by the oviposition behavior of the pierid butterfly Anthocharis scolymus. Females searched for the host plants visually and they frequently approached taller host plants with sparse surrounding vegetation. After encountering host plants, oviposition behavior of females was independent of host plant characteristics such as height, density, and type of surrounding vegetation. A female laid eggs singly on a host plants. Most females appeared to lay their eggs regardless of the presense of eggs on the host plant. Consequently egg and larva tended to be abundant on conspicuous host plants as measured by height or relative isolation from other plants. However, overcrowding of eggs on an individual host decreased the survival rate of larvae.  相似文献   
2.
3.
Animal body coloration serves several functions such as thermoregulation, camouflage, aposematism, and intraspecific communication. In some orb‐web spiders, bright and conspicuous body colours are used to attract prey. On the other hand, there are other species whose body colour does not attract prey. Using a spider species showing individual body‐colour variation, the present study aimed to determine whether or not the variation in body colour shows a correlation with predation rates. We studied the orb‐web spider (Cyclosa argenteoalba) using both field observations and T‐maze experiments, in which the prey were exposed to differently coloured spiders. Cyclosa argenteoalba has silver‐ and black‐coloured areas on its dorsal abdomen, with the ratio of these two colours varying continuously among individuals. The bright and conspicuous silver area reflects ultraviolet light. Results of both field observations and colour choice experiments using Drosophila flies as prey showed that darker spiders have a greater chance of capturing prey than silver spiders. This indicates that body‐colour variation affects predation success among individuals and that the bright silver colour does not function to attract prey in C. argenteoalba.  相似文献   
4.
Animals titrate their behaviour against the level of risk and an individual's conspicuousness should influence decisions such as when to flee and for how long to hide. Conspicuousness will vary with variation in substrate colour. Since hermit crabs frequently change the shells they occupy, shell colour will also influence conspicuousness and to be aware of their conspicuousness would require information on both of these factors to be integrated. Reduced boldness in high-contrast shell and substrate combinations compared with situations of low contrast indicates that hermit crabs are aware of current conspicuousness. Differences between individuals remained consistent across conspicuousness levels indicating the presence of animal personalities.  相似文献   
5.
The initial evolution of conspicuous warning signals presents an evolutionary problem because selection against rare conspicuous signals is presumed to be strong, and new signals are rare when they first arise. Several possible solutions have been offered to solve this apparent evolutionary paradox, but disagreement persists over the plausibility of some of the proposed mechanisms. In this paper, we construct a deterministic numerical simulation model that allows us to derive the strength of selection on novel warning signals in a wide range of biologically relevant situations. We study the effects of predator psychology (learning, rate of mistaken attacks, and neophobia) on selection. We also study the how prey escape, predation intensity, number of predators, and abundance of different prey types affects selection. The model provides several important results. Selection on novel warning signals is number rather than frequency dependent. In most cases, there exists a threshold number of aposematic individuals below which aposematism is selected against and above which aposematism is selected for. Signal conspicuousness (which increases detection rate) and distinctiveness (which allows predator to distinguish defended from nondefended prey) have opposing effects on evolution of warning signals. A more conspicuous warning signal cannot evolve unless it makes the prey more distinctive from palatable prey, reducing mistaken attacks by predators. A novel warning signal that is learned quickly can spread from lower abundance more easily than a signal that is learned more slowly. However, the relative rate at which the resident signal and the novel signal are learned is irrelevant for the spread of the novel signal. Long-lasting neophobia can facilitate the spread of novel warning signals. Individual selection via the ability of defended prey to escape from predator is not likely to facilitate evolution of conspicuous warning signals if both the resident (cryptic) morph and the novel morph have the same escape probability. Predation intensity (defined as the proportion of palatable prey eaten by the predator) has a strong effect on selection. More intense predation results in strong selection against rare signals, but also strong selective advantage to common signals. The threshold number of aposematic individuals is lower when predation is intense. Thus, the evolution of warning signals may be more likely in environments where predation is intense. The effect of numbers of predators depends on whether predation intensity also changes. When predation intensity is constant, increasing numbers of predators raises the threshold number of aposematic individuals, and thus makes evolution of aposematism more difficult. If predation intensity increases in parallel with number of predators, the threshold number of aposematic individuals does not change much, but selection becomes more intense on both sides of the threshold.  相似文献   
6.
7.
Wallace proposed in 1868 that natural rather than sexual selection could explain the striking differences in avian plumage dichromatism. Thus, he predicted that nesting habits, through their association with nest predation, could drive changes in sexual dichromatism by enabling females in cavity nesters to become as conspicuous as males, whereas Darwin (1871, The Descent of Man and Selection in Relation to Sex, John Murray, London) argued that sexual selection was the sole explanation for dichromatism. Sexual dichromatism is currently used as indicating the strength of sexual selection, and therefore testing Wallace's claim with modern phylogentically controlled methodologies is of prime interest for comparing the roles of natural and sexual selection in affecting the evolution of avian coloration. Here, we have related information on nest attendance, sexual dichromatism and nesting habits (open and cavity nesting) to male and female plumage conspicuousness in European passerines. Nest incubation attendance does not explain male or female plumage conspicuousness but nest type does. Moreover, although females of monochromatic and cavity nesting species are more conspicuous than females of other species, males of monochromatic and open nesting species are those with more cryptic plumage. Finally, analyses of character evolution suggest that changes in nesting habits influence the probability of changes in both dichromatism and plumage conspicuousness of males but do not significantly affect those in females. These results strongly suggest a role of nesting habits in the evolution of plumage conspicuousness of males, and a role for sexual selection also in females, both factors affecting the evolution of sexual dichromatism. We discuss our findings in relation to the debate that Darwin and Wallace maintained more than one century ago on the importance of natural and sexual selection in driving the evolution of plumage conspicuousness and sexual dichromatism in birds, and conclude that our results partly support the evolutionary scenarios envisaged by both extraordinary scientists.  相似文献   
8.
9.
The incredible diversity of colour patterns in coral reef fishes has intrigued biologists for centuries. Yet, despite the many proposed explanations for this diversity in coloration, definitive tests of the role of ecological factors in shaping the evolution of particular colour pattern traits are absent. Patterns such as spots and eyespots (spots surrounded by concentric rings of contrasting colour) have often been assumed to function for predator defence by mimicking predators'' enemies'' eyes, deflecting attacks or intimidating predators, but the evolutionary processes underlying these functions have never been addressed. Striped body patterns have been suggested to serve for both social communication and predator defence, but the impact of ecological constraints remains unclear. We conducted the first comparative analysis of colour pattern diversity in butterflyfishes (Family: Chaetodontidae), fishes with conspicuous spots, eyespots and wide variation in coloration. Using a dated molecular phylogeny of 95 species (approx. 75% of the family), we tested whether spots and eyespots have evolved characteristics that are consistent with their proposed defensive function and whether the presence of spots and body stripes is linked with species'' body length, dietary complexity, habitat diversity or social behaviour. Contrary to our expectations, spots and eyespots appeared relatively recently in butterflyfish evolution and are highly evolutionarily labile, suggesting that they are unlikely to have played an important part in the evolutionary history of the group. Striped body patterns showed correlated evolution with a number of ecological factors including habitat type, sociality and dietary complexity. Our findings question the prevailing view that eyespots are an evolutionary response to predation pressure, providing a valuable counter example to the role of these markings as revealed in other taxa.  相似文献   
10.
Both natural and sexual selection are thought to affect the evolution of bird color. Most studies of the topic have focused on sexually dichromatic taxa and showy plumages, which are expected to be more influenced by social selection and usually result in increased conspicuousness. However, many bird clades display dull brown or gray plumages that vary greatly in brightness (lightness), but little in hue (shade). Here, we examine the macroevolution of brightness in one such clade, the Furnariida. We make comparisons across light environments, body parts, monochromatic lineages, and each sex of dichromatic lineages. We found that support for models including light environments is greater for the dorsum than for the venter, and that brightness evolution is more constrained in the former than in the latter. Plumages in this clade have evolved to be darker in darker habitats, consistent with natural selection for increased crypsis. Finally, the features of brightness macroevolution are broadly similar across the sexes of the dichromatic clade, challenging the view that sexual dichromatism is driven by different evolutionary processes acting in each sex. We conclude that, in the Furnariida, light environments and dorsal–ventral variation are more important than sex as axes of color evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号