首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  4篇
  2015年   1篇
  2008年   1篇
  2007年   1篇
  1997年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
AIMS: To detect the effect of pepsin-hydrolysate conglycinin (PTC) on the growth of Escherichia coli O(138)in vitro, and investigate the effect of PTC on intestinal microbial community of mice after E. coli infection. METHODS AND RESULTS: Serial dilution method was used to detect the antibacterial activity of PTC in 96-well cell-cultivated plates. Fifty-five KM mice were randomly assigned to five groups: normal, feeding-E. coli control, HCl-full hydrolysis of conglycinin, conglycinin and PTC. Orally administrated with hydrolysates from conglycinin for 21 days, each mouse was fed with 2 x 10(8) CFU ml(-1) of E. coli O(138) on the 22nd day. The mice activities were monitored and polymerase chain reaction-denaturing gradient gel electrophoresis was used to analyse the microbial community in mice faeces. The results showed that PTC could inhibit growth of E. coli O(138) at nitrogen concentrations of more than 520 mg l(-1). There was high similarity of intestinal microbial community in mice between PTC and normal groups. CONCLUSION: PTC inhibits growth of E. coli O(138), keeps mice healthy following oral administration of E. coli infection and maintains a balanced active microbial community in their gastrointestinal tract. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrated the antibacterial activity of PTC against E. coli and its ability to maintain healthy intestinal microbial community in mice even after they were infected with E. coli. This observation is significant in the application of PTC to prevent gastrointestinal diseases caused by E. coli and unbalanced intestinal microflora.  相似文献   
2.
We have designed protein molecules based on an -helical coiled-coil structure. These proteins can be tailored to complement nutritionally unbalanced seed meals. In particular, these proteins may contain up to 43% mol/mol of the essential amino acid lysine. Genes encoding such proteins were constructed using synthetic oligonucleotides and the protein stability was tested for in vivo by expression in an Escherichia coli model system. A protein containing 31% lysine and 20% methionine (CP 3-5) was expressed in transgenic tobacco seeds utilizing the seed specific bean phaseolin and soybean -conglycinin promoters. Both promoters provided a level of expression in the mature transgenic tobacco seeds which resulted in a significant increase in the total lysine content of the seeds. Several of these transgenic lines were analyzed for three generations to determine the stability of gene expression. Plants transformed with the soybean -conglycinin promoter/CP 3-5 gene consistently expressed the high-lysine phenotype through three generations. However, expression of the high-lysine phenotype in plants transformed with the bean phaseolin/CP 3-5 was variable. This is the first report of a significant increase in seed lysine content due to the seed-specific expression of a de novo protein sequence.  相似文献   
3.
4.
Seeds possess a high intrinsic capacity for protein production that makes them a desirable bioreactor platform for the manufacture of transgenic products. One strategy to enhance foreign protein production involves exchanging the capacity to produce intrinsic proteins for the capacity to produce a high level of foreign proteins. Suppression of the alpha/alpha' subunit of beta-conglycinin storage protein synthesis in soybean has been shown previously to result in an increase in the accumulation of the glycinin storage protein, some of which is sequestered as proglycinin into de novo endoplasmic reticulum (ER)-derived protein bodies. The exchange of glycinin for conglycinin is quantitative, with the remodelled soybeans possessing a normal protein content with an altered proteome. The green fluorescent protein (GFP)-kdel reporter was transferred in a construct using the glycinin promoter and terminator to mimic glycinin gene expression. When expressed in soybean seeds, GFP-kdel accreted to form ER-derived protein bodies. The introgression of GFP-kdel into the alpha/alpha' subunit of the beta-conglycinin suppression background resulted in a fourfold enhancement of GFP-kdel accumulation to > 7% (w/w) of the total protein in soybean seeds. The resulting seeds accumulated a single population of ER membrane-bound protein bodies that contained both GFP-kdel and glycinin. Thus, the collateral proteome rebalancing that occurs with the suppression of intrinsic proteins in soybean can be exploited to produce an enhanced level of foreign proteins.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号