首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
  2023年   1篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2010年   1篇
  2009年   1篇
  2008年   5篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2000年   1篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
The SHR-Lx congenic strain carrying a differential segment of chromosome 8 of BN and PD origin was recently shown to exhibit a significant decrease in blood pressure as compared to the SHR strain. There were two positional candidate genes for blood pressure control mapped to the differential segment: the rat kidney epithelial potassium channel gene (Kcnj1) and brain dopamine receptor 2 gene (Drd2). Bot these genes were separated into SHR.BN-RNO8 congenic substrains. In this communication, we are presenting the assignment of two further putative candidate genes, which might be involved in blood pressure control to the BN/PD differential segment of the SHR-Lx congenic strain. These are: the gene coding for smooth muscle cell specific protein 22 (Sm22) defined by the D8Mcw1 marker and neuronal nicotinic acetylcholine receptor gene cluster, defined by the D8Bord1 marker. Moreover, the glutamate receptor gene Grik4 which also maps to the differential segment of the SHR-Lx should be taken into account. The genetic separation of all these putative candidate genes of blood pressure control is being performed by recombinations and subsequent selection using (SHR×SHR-Lx) intercross population.  相似文献   
2.
Liver -glucuronidase is structurally altered in inbred strain PAC so that a peptide subunit with a more basic isoelectric point, GUS-SN, is produced. This allele of -glucuronidase was transferred to strain C57BL/6J by 12 backcross matings to form the congenic line B6 · PAC-Gus n. Liver -glucuronidase activity was halved in males of the congenic strain compared to normal males. The lowered activity was specifically accounted for by a decrease in the lysosomal component. There was no alteration in the concentration of microsomal activity. This alteration in the subcellular distribution of -glucuronidase in Gus n/Gus n mice was confirmed by two independent gel electrophoretic systems which separate microsomal and lysosomal components. -Glucuronidase activity was likewise approximately halved in mutant spleen, lung, and brain, organs which contain exclusively or predominantly lysosomal -glucuronidase. The loss of liver lysosomal -glucuronidase activity was shown by immunotitration to be due to a decrease in the number of -glucuronidase molecules in lysosomes of the congenic strain. The Gus n structural alteration likely causes the lowered lysosomal -glucuronidase activity since the two traits remain in congenic animals. Heterozygous Gus n/Gus b animals had intermediate levels of liver -glucuronidase. Also, the effect was specific, in that three other lysosomal enzymes were not reproducibly lower in Gus n/Gus n mice. Gus n is, therefore, an unusual example of a mutation which causes a change in the subcellular distribution of a two-site enzyme.This work was supported by National Institutes of Health Grants GM-33559 and GM-33160 and National Science Foundation Grant PCM-8215808.  相似文献   
3.
The activity and level of hepatic pyruvate carboxylase (PC) has been reported to be altered by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treatment in mice. If alteration in PC level/activity by TCDD influences TCDD toxicity, one would expect to observe an early post-exposure reduction in PC mRNA. To examine the molecular events responsible for the alteration of PC activity in livers of TCDD-treated mice, we designed a synthetic DNA oligonucleotide probe specific for PC mRNA. Northern blot analysis on RNA extracts from hepatic tissue at various times and doses post-TCDD exposure were done. Furthermore, to elucidate the role of the dioxin Ah locus on alterations of PC activity by TCDD, we utilized C57BL/6J (Ahb/b, Ah high TCDD affinity) mice and a congenic (Ahd/d, Ah low TCDD affinity) mouse strain. At 8 days post TCDD treatment, a dose-dependent reduction of hepatic PC mRNA levels was observed in Ahb/b mice. The response, reduction in PC mRNA levels, in the Ahb/b strain was about 10-fold greater than that of comparably exposed congenic Ahd/d mice. These results indicate that previously reported reductions in PC activity/level by TCDD treatment of mice is a consequence of a reduction in PC mRNA levels and that the effect requires a competent Ah receptor. © 1996 John Wiley & Sons, Inc.  相似文献   
4.
BACKGROUND: Nonsyndromic cleft lip with or without cleft palate, CL(P), is a common human birth defect with a complex unknown genetic cause. The mouse model is the "A/-" strains. Our previous studies mapped two loci: clf1 on Chr11 and clf2 on Chr13--with a strong genetic maternal effect on the level of risk. Here we test the hypothesis that CL(P) is digenic and identify candidate genes for clf1 and clf2. METHODS: We observed E14 CL(P) frequencies in backcross (BC1) embryos from a new cross of A/WySn to AXB-4/Pgn and from test crosses of three new "congenic RI" lines. Using new polymorphic markers from genes and our mapping panels of segregants and RI strains, we identified the candidate genes for clf1 and clf2. We sequenced the coding region of Ptch in A/WySn cDNA. RESULTS: Seventy new BC1 CL(P) segregants (4%) were obtained, as predicted. All three new congenic RI lines homozygous for both clf1 and clf2 had A/WySn-level CL(P) frequencies (10-30%) in test crosses. The clf1 region contains 10 known genes (Arf2, Cdc27, Crhr1, Gosr2, Itgb3, Mapt, Myl4, Nsf, Wnt3, and Wnt9b). The clf2 region contains 17 known genes with human orthologs. Both regions contain additional potential genes. No causal mutation in Ptch coding sequence was found. CONCLUSIONS: In A-strain mice, nonsyndromic CL(P) is digenic, suggesting that nonsyndromic human CL(P) may also be digenic. The orthologous human genes are on 17q (clf1) and 9q, 8q and 5p (clf2), and good candidate genes are WNT3 or WNT9B (17q), and PTCH (9q) or MTRR (5p).  相似文献   
5.
Genetic differences in sensitivity to nicotine have been reported in both animals and humans. The present study utilized a novel methodology to map genes involved in regulating both the psychostimulant and depressant effects of nicotine in the AcB/BcA recombinant congenic strains (RCS) of mice. Locomotor activity was measured in a computerized open-field apparatus following subcutaneous administration of saline (days 1 and 2) or nicotine on day 3. The phenotypic measures obtained from this experimental design included total basal locomotor activity, as well as total nicotine activity, nicotine difference scores, nicotine percent change and nicotine regression residual scores. The results indicated that the C57BL/6J (B6) were insensitive to nicotine over the entire dose-response curve (0.1, 0.2, 0.4 and 0.8 mg/kg). However, the 0.8-mg/kg dose of nicotine produced a significant decrease in the locomotor activity in the A/J strain and a wide and continuous range of both locomotor excitation and depression among the AcB/BcA RCS. Single-locus association analysis in the AcB RCS identified quantitative trait loci (QTL) for the psychostimulant effects of nicotine on chromosomes 11, 12, 13, 14 and 17 and one QTL for nicotine-induced depression on chromosome 11. In the BcA RCS, nicotine-induced locomotor activation was associated with seven putative regions on chromosomes 2, 7, 8, 13, 14, 16 and 17. There were no overlapping QTL and no genetic correlations between saline- and nicotine-related phenotypes in the AcB/BcA RCS. A number of putative candidate genes were in proximity to regions identified with nicotine sensitivity, including the alpha2 subunit of the nicotinic acetylcholine receptor and the dopamine D3 receptor.  相似文献   
6.
The Ca2+ channel α1B subunit is a pore-forming component capable of generating N-type Ca2+ channel activity. Although the N-type Ca2+ channel plays a role in a variety of neuronal functions, α1B-deficient mice did not show apparent behavioral abnormality. In a previous study, we observed a compensatory increase of mRNA expression of the P/Q-type Ca2+ channel α1A subunit gene in olfactory bulb of α1B-deficient mice with a CBA × C57BL/6 background; these mice showed a normal reproductive ability. In this study, we found that the mRNA expression level of the α1A subunit was the same in olfactory bulb of wild, heterozygous, and homozygous α1B-deficient mice with a CBA/JN background, and the homozygous male mice produced no offspring. These results suggest that the genetic background influences α1A subunit mRNA expression and reproductive ability in α1B-deficient mice.  相似文献   
7.
8.
Inbred strains of mice differ in their susceptibility to excitotoxin-induced cell death, but the genetic basis of individual variation in differential susceptibility is unknown. Previously, we identified a highly significant quantitative trait locus (QTL) on chromosome 18 that influenced susceptibility to kainic acid-induced cell death ( Sicd1 ). Comparison of susceptibility to seizure-induced cell death between reciprocal congenic lines for Sicd1 and parental background mice indicates that genes influencing this trait were captured in both strains. Two positional gene candidates, Galr1 and Mbp , map to 55 cM, where the Sicd1 QTL had been previously mapped. Thus, this study was undertaken to determine if Galr1 and/or Mbp could be considered as candidate genes. Genomic sequence comparison of these two functional candidate genes from the C57BL/6J (resistant at Sicd1 ) and the FVB/NJ (susceptible at Sicd1 ) strains showed no single-nucleotide polymorphisms. However, expression studies confirmed that Galr1 shows significant differential expression in the congenic and parental inbred strains. Galr1 expression was downregulated in the hippocampus of C57BL/6J mice and FVB.B6- Sicd1 congenic mice when compared with FVB/NJ or B6.FVB- Sicd1 congenic mice. A survey of Galr1 expression among other inbred strains showed a significant effect such that 'susceptible' strains showed a reduction in Galr1 expression as compared with 'resistant' strains. In contrast, no differences in Mbp expression were observed. In summary, these results suggest that differential expression of Galr1 may contribute to the differences in susceptibility to seizure-induced cell death between cell death-resistant and cell death-susceptible strains.  相似文献   
9.
Catalepsy or pronounced freezing is a natural passive defense strategy in animals and a syndrome of some mental disorders in human. Hereditary catalepsy was shown to be associated with depressive-like features in rats and mice. The loci underlying the difference in predisposition to catalepsy between catalepsy-prone CBA/lacJ and catalepsy-resistant AKR/J mice were mapped using congenic line and selective breeding approaches. Three congenic mouse lines (AKR.CBA-D13Mit76C, AKR.CBA-D13Mit76A and AKR.CBA-D13Mit78) carrying the 59- to 70-, 61- to 70- and 71- to 75-c m fragments of chromosome 13 transferred from the CBA to the AKR genome were created by nine successive backcrossing of (CBA × AKR)F1 on AKR strain. Because catalepsy was found only in the AKR.CBA-D13Mit76C and AKR.CBA-D13Mit76A mice, the major gene of catalepsy was mapped on the fragment of 61–70 c m . Selective breeding of the (CBA × (CBA × AKR))BC backcross generation for high predisposition to catalepsy showed numerous genome-wide distributed CBA-derived alleles as well as the AKR-derived alleles mapped on chromosome 17 and on the proximal parts of chromosomes 10 and 19 that increased the cataleptogenic effect of the major gene.  相似文献   
10.
Genome-wide association studies have revealed that many low-penetrance cancer susceptibility loci are located throughout the genome; however, a very limited number of genes have been identified so far. Using a forward genetics approach to map such loci in a mouse skin cancer model, we previously identified strong genetic loci conferring resistance to chemically induced skin papillomas on chromosome 4 and 7 with a large number of [(FVB/N × MSM/Ms) F1 × FVB/N] backcross mice. In this report, we describe a combination of congenic mapping and allele-specific alteration analysis of the loci on chromosome 4. We used linkage analysis and a congenic mouse strain, FVB.MSM-Stmm3 to refine the location of Stmm3 (Skin tumor modifier of MSM 3) locus within a physical interval of about 34 Mb on distal chromosome 4. In addition, we used patterns of allele-specific imbalances in tumors from N2 and N10 congenic mice to narrow down further the region of Stmm3 locus to a physical distance of about 25 Mb. Furthermore, immunohistochemical analysis showed papillomas from congenic mice had less proliferative activity. These results suggest that Stmm3 responsible genes may have an influence on papilloma formation in the two-stage skin carcinogenesis by regulating papilloma growth rather than development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号