首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   95篇
  268篇
  2024年   10篇
  2023年   5篇
  2021年   4篇
  2020年   61篇
  2019年   40篇
  2018年   31篇
  2017年   20篇
  2016年   19篇
  2015年   22篇
  2014年   10篇
  2013年   5篇
  2012年   3篇
  2011年   6篇
  2007年   1篇
  2006年   3篇
  2004年   2篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1989年   1篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有268条查询结果,搜索用时 0 毫秒
1.
While haemoconcentration due to loss of plasma volume is well established during cycling, the existence of similar changes during running remains contentious. This study compared the changes in plasma volume and associated blood indices during 60 min of running and cycling at the same relative intensity (approximately 65% VO2max), with all changes referenced to blood indices obtained after 30 min seated at rest on a cycle ergometer. Plasma osmolarity increased similarly with both forms of exercise but was less than predicted for water loss alone, such that there was a net loss of sodium during exercise and of potassium postexercise, with essentially no loss of protein. Plasma volume decreased similarly (approximately 6.5%) in both exercise trials, but while that with cycling was initiated by exercise itself and was essentially maximal within 5 min, the reduction in plasma volume in the running trial was induced by adopting the upright posture and was complete before exercise began. These data would indicate that different mechanisms are responsible for the changes in plasma volume induced by running and cycling, while the similarity of change would suggest that there is a lower limit to any reduction in plasma volume, regardless of mechanism. Furthermore, the observation that the changes in plasma volume were complete before or early in exercise, would imply that oral water ingestion during prolonged exercise, which is essential for thermoregulation, may be more concerned with homeostasis of extravascular water rather than plasma volume.  相似文献   
2.
3.
4.
Rechargeable aqueous Zn/MnO2 batteries are very attractive large‐scale energy storage technologies, but still suffer from limited cycle life and low capacity. Here the novel adoption of a near‐neutral acetate‐based electrolyte (pH ≈ 6) is presented to promote the two‐electron Mn4+/Mn2+ redox reaction and simultaneously enable a stable Zn anode. The acetate anion triggers a highly reversible MnO2/Mn2+ reaction, which ensures high capacity and avoids the issue of structural collapse of MnO2. Meanwhile, the anode‐friendly electrolyte enables a dendrite‐free Zn anode with outstanding stability and high plating/stripping Coulombic efficiency (99.8%). Hence, a high capacity of 556 mA h g?1, a lifetime of 4000 cycles without decay, and excellent rate capability up to 70 mA cm?2 are demonstated in this new near‐neutral aqueous Zn/MnO2 battery by simply manipulating the salt anion in the electrolyte. The acetate anion not only modifies the surface properties of MnO2 cathode but also creates a highly compatible environment for the Zn anode. This work provides a new opportunity for developing high‐performance Zn/MnO2 and other aqueous batteries based on the salt anion chemistry.  相似文献   
5.
6.
Lithium–sulfur batteries (LSBs) are considered promising candidates for the next‐generation energy‐storage systems due to their high theoretical capacity and prevalent abundance of sulfur. Their reversible operation, however, encounters challenges from both the anode, where dendritic and dead Li‐metal form, and the cathode, where polysulfides dissolve and become parasitic shuttles. Both issues arise from the imperfection of interphases between electrolyte and electrode. Herein, a new lithium salt based on an imide anion with fluorination and unsaturation in its structure is reported, whose interphasial chemistries resolve these issues simultaneously. Lithium 1, 1, 2, 2, 3, 3‐hexafluoropropane‐1, 3‐disulfonimide (LiHFDF) forms highly fluorinated interphases at both anode and cathode surfaces, which effectively suppress formation of Li‐dendrites and dissolution/shuttling of polysulfides, and significantly improves the electrochemical reversibility of LSBs. In a broader context, this new Li salt offers a new perspective for diversified beyond Li‐ion chemistries that rely on a Li‐metal anode and active cathode materials.  相似文献   
7.
Present study focuses on ameliorative potential of Typha elephantina leave’s aqueous (TE.AQ) extract against Paracetamol (PCM) induced toxicity in rabbits. We fed the male rabbits with 300 mg PCM in alone and in combination with TE.AQ at different doses i.e. (100, 200 and 300 mg/kg body weight) or silymarin (100 mg/kg) daily for 21 days. PCM in alone significantly (P < 0.5) increased serum urea, uric acid, creatinine, total protein, albumin, globulin and blood urea nitrogen. Serum sodium, potassium and magnesium level were high. The glutathione, radical scavenging activity and Thiobarbituric acid reactive substances were significantly reduced. Treatment with TE.AQ at dose rate 300 mg/kg body weight and Silymarin significantly ameliorated all the parameters when compared with PCM administered group. The 100 and 200 mg of TE.AQ showed no significant effects. The histopathological examination confirmed the therapeutic potential of TE.AQ. These results established the presence of natural antioxidants in Typha elephantina leaves.  相似文献   
8.
The estimation of numerical values of the mean distance of closest approach of ions, a, of heavy metal ion salts in aqueous solutions, determined from activity coefficients, as well as from different theoretical approaches, is presented and discussed.  相似文献   
9.
White-nose syndrome is devastating North American bat populations but we lack basic information on disease mechanisms. Altered blood physiology owing to epidermal invasion by the fungal pathogen Geomyces destructans (Gd) has been hypothesized as a cause of disrupted torpor patterns of affected hibernating bats, leading to mortality. Here, we present data on blood electrolyte concentration, haematology and acid–base balance of hibernating little brown bats, Myotis lucifugus, following experimental inoculation with Gd. Compared with controls, infected bats showed electrolyte depletion (i.e. lower plasma sodium), changes in haematology (i.e. increased haematocrit and decreased glucose) and disrupted acid–base balance (i.e. lower CO2 partial pressure and bicarbonate). These findings indicate hypotonic dehydration, hypovolaemia and metabolic acidosis. We propose a mechanistic model linking tissue damage to altered homeostasis and morbidity/mortality.  相似文献   
10.
Batteries for high temperature applications capable of withstanding over 60 °C are still dominated by primary cells. Conventional rechargeable energy storage technologies which have exceptional performance at ambient temperatures employ volatile electrolytes and soft separators, resulting in catastrophic failure under heat. A composite electrolyte/separator is reported that holds the key to extend the capability of Li‐ion batteries to high temperatures. A stoichiometric mixture of hexagonal boron nitride, piperidinium‐based ionic liquid, and a lithium salt is formulated, with ionic conductivity reaching 3 mS cm?1, electrochemical stability up to 5 V and extended thermal stability. The composite is used in combination with conventional electrodes and demonstrates to be stable for over 600 cycles at 120 °C, with a total capacity fade of less than 3%. The ease of formulation along with superior thermal and electrochemical stability of this system extends the use of Li‐ion chemistries to applications beyond consumer electronics and electric vehicles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号