首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3221篇
  免费   230篇
  国内免费   47篇
  2024年   8篇
  2023年   163篇
  2022年   130篇
  2021年   181篇
  2020年   239篇
  2019年   367篇
  2018年   268篇
  2017年   265篇
  2016年   231篇
  2015年   104篇
  2014年   193篇
  2013年   400篇
  2012年   90篇
  2011年   113篇
  2010年   61篇
  2009年   89篇
  2008年   115篇
  2007年   91篇
  2006年   75篇
  2005年   61篇
  2004年   54篇
  2003年   42篇
  2002年   34篇
  2001年   20篇
  2000年   14篇
  1999年   10篇
  1998年   19篇
  1997年   13篇
  1996年   12篇
  1995年   8篇
  1994年   10篇
  1993年   7篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1981年   1篇
  1950年   1篇
排序方式: 共有3498条查询结果,搜索用时 15 毫秒
1.
Computer-aided antibody engineering has been successful in the design of new biologics for disease diagnosis and therapeutic interventions. Interleukin-6 (IL-6), a well-recognized drug target for various autoimmune and inflammatory diseases such as rheumatoid arthritis, multiple sclerosis, and psoriasis, was investigated in silico to design potential lead antibodies. Here, crystal structure of IL-6 along with monoclonal antibody olokizumab was explored to predict antigen–antibody (Ag???Ab)-interacting residues using DiscoTope, Paratome, and PyMOL. Tyr56, Tyr103 in heavy chain and Gly30, Ile31 in light chain of olokizumab were mutated with residues Ser, Thr, Tyr, Trp, and Phe. A set of 899 mutant macromolecules were designed, and binding affinity of these macromolecules to IL-6 was evaluated through Ag???Ab docking (ZDOCK, ClusPro, and Rosetta server), binding free-energy calculations using Molecular Mechanics/Poisson Boltzman Surface Area (MM/PBSA) method, and interaction energy estimation. In comparison to olokizumab, eight newly designed theoretical antibodies demonstrated better result in all assessments. Therefore, these newly designed macromolecules were proposed as potential lead antibodies to serve as a therapeutics option for IL-6-mediated diseases.  相似文献   
2.
The purpose of this study was to explore new insights in non-linearity, hysteresis and ventilation heterogeneity of asthmatic human lungs using four-dimensional computed tomography (4D-CT) image data acquired during tidal breathing. Volumetric image data were acquired for 5 non-severe and one severe asthmatic volunteers. Besides 4D-CT image data, function residual capacity and total lung capacity image data during breath-hold were acquired for comparison with dynamic scans. Quantitative results were compared with the previously reported analysis of five healthy human lungs. Using an image registration technique, local variables such as regional ventilation and anisotropic deformation index (ADI) were estimated. Regional ventilation characteristics of non-severe asthmatic subjects were similar to those of healthy subjects, but different from the severe asthmatic subject. Lobar airflow fractions were also well correlated between static and dynamic scans (R2 > 0.84). However, local ventilation heterogeneity significantly increased during tidal breathing in both healthy and asthmatic subjects relative to that of breath-hold perhaps because of airway resistance present only in dynamic breathing. ADI was used to quantify non-linearity and hysteresis of lung motion during tidal breathing. Non-linearity was greater on inhalation than exhalation among all subjects. However, exhalation non-linearity among asthmatic subjects was greater than healthy subjects and the difference diminished during inhalation. An increase of non-linearity during exhalation in asthmatic subjects accounted for lower hysteresis relative to that of healthy ones. Thus, assessment of non-linearity differences between healthy and asthmatic lungs during exhalation may provide quantitative metrics for subject identification and outcome assessment of new interventions.  相似文献   
3.
The non-receptor tyrosine kinase Syk (spleen tyrosine kinase) is a pharmaceutical relevant target because its over-activation is observed in several autoimmune diseases, allergy, and asthma. Here we report the identification of two novel inhibitors of Syk by high-throughput docking into a rare C-helix-out conformation published recently. Interestingly, both compounds are slightly more active on ZAP70 (Zeta-chain-associated protein kinase 70), which is the kinase closest to Syk in the phylogenetic tree of human kinases. Taken together, the docking pose and experimental results suggest that the higher affinity of the inhibitors for ZAP70 than Syk originates from a more populated C-helix-out conformation in ZAP70. The latter observation is congruent with the 100-fold lower intrinsic activity of ZAP70 than Syk, as the C-helix-out conformation is inactive. The pharmacophore features of DFG-in, C-helix-out compounds are analyzed in relation to DFG-out inhibitors.  相似文献   
4.
Microtubule stabilizers provide an important mode of treatment via mitotic cell arrest of cancer cells. Recently, we reported two novel neolignans derivatives Cmp10 and Cmp19 showing anticancer activity and working as microtubule stabilizers at micromolar concentrations. In this study, we have explored the binding site, mode of binding, and stabilization by two novel microtubule stabilizers Cmp10 and Cmp19 using in silico molecular docking, molecular dynamics (MD) simulation, and binding free energy calculations. Molecular docking studies were performed to explore the β-tubulin binding site of Cmp10 and Cmp19. Further, MD simulations were used to probe the β-tubulin stabilization mechanism by Cmp10 and Cmp19. Binding affinity was also compared for Cmp10 and Cmp19 using binding free energy calculations. Our docking results revealed that both the compounds bind at Ptxl binding site in β-tubulin. MD simulation studies showed that Cmp10 and Cmp19 binding stabilizes M-loop (Phe272-Val288) residues of β-tubulin and prevent its dynamics, leading to a better packing between α and β subunits from adjacent tubulin dimers. In addition, His229, Ser280 and Gln281, and Arg278, Thr276, and Ser232 were found to be the key amino acid residues forming H-bonds with Cmp10 and Cmp19, respectively. Consequently, binding free energy calculations indicated that Cmp10 (?113.655 kJ/mol) had better binding compared to Cmp19 (?95.216 kJ/mol). This study provides useful insight for better understanding of the binding mechanism of Cmp10 and Cmp19 and will be helpful in designing novel microtubule stabilizers.  相似文献   
5.
Dicoumarol derivatives were synthesized in the InCl3 catalyzed pseudo three-component reactions of 4-hydroxycoumarin with aromatic aldehydes in excellent yields. The reactions were performed in water under microwave irradiation. All synthesized compounds were characterized using NMR, IR, and UV–Vis spectroscopy, as well as with TD-DFT. Obtained dicoumarols were subjected to evaluation of their in vitro lipid peroxidation and soybean lipoxygenase inhibition activities. It was shown that five of ten examined compounds (3e, 3h, 3b, 3d, 3f) possess significant potential of antilipid peroxidation (84–97%), and that compounds 3b, 3e, 3h provided the highest soybean lipoxygenase (LOX-Ib) inhibition (IC50 = 52.5 µM) and 3i somewhat lower activity (IC50 = 55.5 µM). The bioactive conformations of the best LOX-Ib inhibitors were obtained by means of molecular docking and molecular dynamics. It was shown that, within the bioactive conformations interior to LOX-Ib active site, the most active compounds form the pyramidal structure made of two 4-hydroxycoumarin cores and a central phenyl substituent. This form serves as a spatial barrier which prevents LOX-Ib Fe2+/Fe3+ ion activity to generate the coordinative bond with the C13 hydroxyl group of the α-linoleate. It is worth pointing out that the most active compounds 3b, 3e, 3h and 3i can be candidates for further examination of their in vitro and in vivo anti-inflammatory activity and that molecular modeling study results provide possibility to screen bioactive conformations and elucidate the mechanism of dicoumarols anti-LOX activity.  相似文献   
6.
A series of thirty (30) thiazole analogs were prepared, characterized by 1H NMR, 13C NMR and EI-MS and evaluated for Acetylcholinesterase and butyrylcholinesterase inhibitory potential. All analogs exhibited varied butyrylcholinesterase inhibitory activity with IC50 value ranging between 1.59 ± 0.01 and 389.25 ± 1.75 μM when compared with the standard eserine (IC50, 0.85 ± 0.0001 μM). Analogs 15, 7, 12, 9, 14, 1, 30 with IC50 values 1.59 ± 0.01, 1.77 ± 0.01, 6.21 ± 0.01, 7.56 ± 0.01, 8.46 ± 0.01, 14.81 ± 0.32 and 16.54 ± 0.21 μM respectively showed excellent inhibitory potential. Seven analogs 15, 20, 19, 24, 28, 30 and 25 exhibited good acetylcholinesterase inhibitory potential with IC50 values 21.3 ± 0.50, 35.3 ± 0.64, 36.6 ± 0.70, 44.81 ± 0.81, 46.36 ± 0.84, 48.2 ± 0.06 and 48.72 ± 0.91 μM respectively. All other analogs also exhibited well to moderate enzyme inhibition. The binding mode of these compounds was confirmed through molecular docking.  相似文献   
7.
Inhibition of α-glucosidase is an effective strategy for controlling the post-prandial hyperglycemia in diabetic patients. For the identification of new inhibitors of this enzyme, a series of new (R)-1-(2-(4-bromo-2-methoxyphenoxy) propyl)-4-(4-(trifluoromethyl) phenyl)-1H-1,2,3-triazole derivatives were synthesized (8a–d and 10a–e). The structures were confirmed by NMR, mass spectrometry and, in case of compound 8a, by single crystal X-ray crystallography. The α-glucosidase inhibitory activities were investigated in vitro. Most derivatives exhibited significant inhibitory activity against α-glucosidase enzyme. Their structure-activity relationship and molecular docking studies were performed to elucidate the active pharmacophore against this enzyme. Compound 10b was the most active analogue with IC50 value of 14.2 µM, while compound 6 was found to be the least active having 218.1 µM. A preliminary structure-activity relationship suggested that the presence of 1H-1,2,3-triazole ring in 1H-1,2,3-triazole derivatives is responsible for this activity and can be used as anti-diabetic drugs. The molecular docking studies of all active compounds were performed, in order to understand the mode of binding interaction and the energy of this class of compounds.  相似文献   
8.
A computer algorithm, CLIX, capable of searching a crystallographic data-base of small molecules for candidates which have both steric and chemical likelihood of binding a protein of known three-dimensional structure is presented. The algorithm is a significant advance over previous strategies which consider solely steric or chemical requirements for binding. The algorithm is shown to be capable of predicting the correct binding geometry of sialic acid to a mutant influenza-virus hemagglutinin and of proposing a number of potential new ligands to this protein.  相似文献   
9.
A Monte Carlo algorithm that searches for the optimal docking configuration of hen egg white lysozyme to an antibody is developed. Both the lysozyme and the antibody are kept rigid. Unlike the work of other authors, our algorithm does not attempt to explicitly maximize surface contact, but minimizes the energy computed using coarse-grained pair potentials. The final refinement of our best solutions using all-atom OPLS potentials (Jorgensen and Tirado-Rives8) consistently yields the native conformation as the preferred solution for three different antibodies. We find that the use of an exponential distance-dependent dielectric function is an improvement over the more commonly used linear form. © 1993 Wiley-Liss, Inc.  相似文献   
10.
This study describes the enantioseparation of three chiral amines as naphthaldimine derivatives, using normal phase HPLC with amylose and cellulose tris(3,5-dimethylphenylcarbamate) chiral stationary phases (CSPs). Three chiral amines were derivatized using three structurally similar naphthaldehyde derivatizing agents, and the enantioselectivity of the CSPs toward the derivatives was examined. The degree of enantioseparation and resolution was affected by the amylose or cellulose-derived CSPs and aromatic moieties as well as a kind of chiral amine. Especially, efficient enantiomer separation was observed for 2-hydroxynapthaldimine derivatives on cellulose-derived CSPs. Molecular docking studies of three naphthaldimine derivatives of leucinol on cellulose tris(3,5-dimethylphenylcarbamate) were performed to estimate the binding energies and conformations of the CSP–analyte complexes. The obtained binding energies were in good agreement with the experimentally determined enantioseparation and elution order.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号