首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   331篇
  免费   22篇
  国内免费   10篇
  2024年   2篇
  2023年   3篇
  2022年   2篇
  2021年   7篇
  2020年   8篇
  2019年   11篇
  2018年   14篇
  2017年   11篇
  2016年   15篇
  2015年   12篇
  2014年   30篇
  2013年   40篇
  2012年   8篇
  2011年   12篇
  2010年   11篇
  2009年   17篇
  2008年   21篇
  2007年   13篇
  2006年   8篇
  2005年   11篇
  2004年   9篇
  2003年   11篇
  2002年   12篇
  2001年   7篇
  2000年   8篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   6篇
  1992年   3篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   2篇
  1985年   7篇
  1984年   2篇
  1983年   1篇
  1982年   6篇
  1981年   3篇
  1979年   2篇
排序方式: 共有363条查询结果,搜索用时 15 毫秒
1.
The softening of wet lipid bilayer membranes during their gel-to-fluid first-order phase transition is studied by computer simulation of a family of two-dimensional microscopic interaction models. The models include a variable number, q, of lipid chain conformational states, where 2q10. Results are presented as functions of q and temperature for a number of bulk properties, such as internal energy, specific heat, and lateral compressibility. A quantitative account is given of the statistics of the lipid clusters which are found to form in the neighborhood of the transition. The occurrence of these clusters is related to the softening and the strong thermal density fluctuations which dominate the specific heat and the lateral compressibility for the high-q models. The cluster distributions and the fluctuations behave in a manner reminiscent of critical phenomena and percolation. The findings of long-lived metastable states and extremely slow relaxational behavior in the transition region are shown to be caused by the presence of intermediate lipid chain conformational states which kinetically stabilize the cluster distribution and the effective phase coexistence. This has as its macroscopic consequence that the first-order transition apperas as a continuous transition, as invariably observed in all experiments on uncharged lecithin bilayer membranes. The results also suggest an explanation of the non-horizontal isotherms of lipid monolayers. Possible implications of lipid bilayer softening and enhanced passive permeability for the functioning of biological membranes are discussed.Abbreviations PC phosphatidvlcholine - DMPC dimyristoyl PC - DPPC dipalmitoyl PC - ac alternating current - DSC differential scanning calorimetry - T m lipid gel-to-fluid phase transition temperature - TEMPO 2,2,6,6-tetramethylpiperidine-N-oxyl Supported by the Danish Natural Science Research Council and A/S De Danske Spritfabrikkers JubilæumslegatSupported in part by the NSERC of Canada and Le FCAC du Quebec  相似文献   
2.
Elongation of a helical bacterial flagellar filament subjected to fluid flow was calculated on the assumption that one end of the filament is firmly attached to a substratum. It was found that the quantity [E(d/2 pi r)2 + 2 mu] could be determined by measuring the elongation at various flow rates, where E is Young's modulus, mu the modulus of rigidity, r the radius of the helix, and d the helical pitch. Experiments were carried out to determine the above quantity for Salmonella flagellar filaments assuming a close-coil form. Because the above quantity is almost equal to 2 mu for a helical form with a large radius/pitch ratio, we were able to determine the modulus of rigidity for this kind of flagellar filament from plots of elongation vs. flow rates. The modulus of rigidity was determined to be about 1 X 10(11) dyn/cm2, i.e., 2 orders of magnitude larger than the previously estimated value.  相似文献   
3.
The responses to water stress of the bulk modulus of elasticity () and the apoplastic water fraction were examined using six sunflower cultivars of differing capacity for osmotic adjustment (OA). Water stress did not affect the partitioning of water between apoplastic (ca. 20%) and symplastic fractions in leaves which expanded during the exposure to stress in any genotype. Hence, no genotype-linked effects on either the buffering of cell water status during stress or on the estimates of bulk leaf osmotic potential could be expected. Genotypes differed in the degree of change in (estimated from pressure/volume [P/V] curves) and OA (estimated using both ln RWC/ ln o plots and P/V curves) induced by exposure to stress. In three genotypes increased significantly (p=0.05) as a consequence of stress, in another three change were small. OA was the only attribute of the three examined that could have contributed to turgor maintenance under stress. There was a strong negative association between leaf expansion and degree of OA across genotypes (r=–0.91) and a strong positive one between OA and (r=0.94). However all genotypes evidenced some degree of OA. These results are consistent with part of the genotype differences in OA being attributable to variations in leaf expansion during exposure to stress.  相似文献   
4.
To evaluate the effects of exercise on aortic wall elasticity and elastic components, young male rats underwent various exercise regimes for 16 weeks. In the exercised rats, the aortic incremental elastic modulus decreased significantly when under physiological strain. The aortic content of elastin increased significantly and the calcium content of elastin decreased significantly in the exercised group. The accumulated data from the exercised and sedentary groups revealed that the elastin calcium content was related positively to the incremental elastic modulus. We concluded that physical exercise from an early age decreases the calcium deposit in aortic wall elastin and that this effect probably produced in the exercised rats a distensible aorta.  相似文献   
5.
Abstract Midday water potentials of blades of the dune grasses Ammophila arenaria (L.) Link and Elymus mollis Trin. ex Spreng. growing in situ declined over the summer growing period, indicating a trend of increasing water stress. An analysis of the water relations characteristics of these blades using pressure-volume techniques demonstrated that both species increased bulk osmotic pressure at full hydration () and, therefore, bulk turgor as an acclimation response. In A. arenaria, however, the increase of osmotic pressure (+ 0.35 MPa) was entirely the result of decreasing symplasmic water content. The increase of osmotic pressure (+ 0.54 MPa) observed in E. mollis blades was due to solute accumulation (72% of Δ) and to a lesser degree, decreased symplasmic water content (28% of Δ). Osmotic adjustment in E. mollis blades was accompanied by a significant decrease in tissue elasticity (max went from 12 to 19 MPa). The elastic properties of A. arenaria blades remained constant over the same period and had a maximum modulus (10 MPa) that was always less than that of E. mollis, As estimated from Höfler plots, these seasonal adjustments of osmotic pressure and differences in tissue elasticity enabled plants in situ to maintain turgor pressure in the range of 0.5–0.6 MPa at the lowest water potentials of mid-August. Laboratorygrown plants exhibited the species-specific differences in osmotic pressure, turgor pressure, and tissue elasticity observed in field plants. Although certain alterations of leaf structure were expected to coincide with the observed changes and species-specific differences in symplasmic water content and tissue elasticity, these could not be detected by measurements of specific leaf weight or the ratio of dry matter to saturated water content.  相似文献   
6.
The increase in passive permeability of bilayer membranes near the phase transition temperature is usually explained as caused by either the increase in the amount of ‘boundary lipid’ present in the membrane, or by the increase in lateral compressibility of the membrane. Since both the amount of ‘boundary lipid’ and the lateral compressibility show a similar anomaly near the transition temperature, it is difficult to distinguish experimentally between the two proposed mechanisms.We have examined some details of both of the proposed pictures. The fluid-solid boundary energy, neglected in previous work, has been computed as a function of the domain size. For a single component uncharged lipid bilayer, the results rule out the existence of even loosely defined solid domains in a fluid phase, or vice versa. Thermodynamic fluctuations, which are responsible for anomalous behaviour near the phase transition temperature, are not intense enough to approximate the formation of a domain of the opposite phase.Turning next to lateral compressibility of bilayer membranes we have considered two-component mixtures in the phase separation region. We present the first calculation of lateral compressibility for such systems. The behaviour shows interesting anomalies, which should correlate with existing and future data on transport across membranes.  相似文献   
7.
Improving the statistical mechanical model of Jacobs et al. (Jacobs, R.E., Hudson, B. and Andersen, H.C. (1975) Proc. Natl. Acad. Sci. U.S. 72, 3993–3997) we have constructed a model which describes not only the temperature but also the external field dependence of the membrane structure of phospholipid bilayers. In addition to the interactions between head groups, between hydrocarbon chains, and the internal conformational energy of the chains (which were considered in Jacobs' model), our model includes the energy of deformation and the field energy as well.By the aid of this model we can explain the phenomenon of dielectric breakdown, the non-linearity of current-voltage characteristics, and the mechanism of membrane elasticity.The free energy of the membrane, the average number of the gauche conformations in the hydrocarbon interior and at the membrane surface, gauche distribution along the chain, the membrane thickness, area and volume are calculated at different temperatures and voltages. The calculation also gives the temperature dependence of Young's modulus and that of the linear thermal expansion coefficient.  相似文献   
8.
The topography and mechanical properties of single B-lymphoma cells have been investigated by atomic force microscopy (AFM). With the assistance of microfabricated patterned pillars, the surface topography and ultrastructure of single living B-lymphoma cell were visualized by AFM. The apoptosis of B-lymphoma cells induced by rituximab alone was observed by acridine orange/ethidium bromide (AO/EB) double fluorescent staining. The rituximab-induced changes of mechanical properties in B-lymphoma cells were measured dynamically and the results showed that B-lymphoma cells became dramatically softer after incubation with rituximab. These results can improve our understanding of rituximab’effect and will facilitate the further investigation of the underlying mechanisms.  相似文献   
9.
Although the influence of the series elastic element of the muscle–tendon unit on jump performance has been investigated, the corresponding effect of the parallel elastic element remains unclear. This study examined the relationship between the resting calf muscle stiffness and drop jump performance. Twenty-four healthy men participated in this study. The shear moduli of the medial gastrocnemius and the soleus were measured at rest as an index of muscle stiffness using ultrasound shear wave elastography. The participants performed drop jumps from a 15 cm high box. The Spearman rank correlation coefficient was used to examine the relationships between shear moduli of the muscles and drop jump performance. The medial gastrocnemius shear modulus showed a significant correlation with the drop jump index (jump height/contact time) (r = 0.414, P = 0.044) and jump height (r = 0.411, P = 0.046), but not with contact time (P > 0.05). The soleus shear modulus did not correlate with these jump parameters (P > 0.05). These results suggest that the resting medial gastrocnemius stiffness can be considered as one of the factors that influence drop jump performance. Therefore, increase in resting muscle stiffness should enhance explosive athletic performance in training regimens.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号