首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   20篇
  国内免费   1篇
  2023年   1篇
  2022年   5篇
  2021年   1篇
  2020年   3篇
  2019年   4篇
  2018年   6篇
  2017年   4篇
  2016年   6篇
  2015年   6篇
  2014年   11篇
  2013年   8篇
  2012年   9篇
  2011年   6篇
  2010年   3篇
  2008年   3篇
  2007年   3篇
  2006年   5篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1997年   1篇
排序方式: 共有90条查询结果,搜索用时 31 毫秒
1.
The (Bi,Sb)2Te3 (BST) compounds have long been considered as the benchmark of thermoelectric (TE) materials near room temperature especially for refrigeration. However, their unsatisfactory TE performances in wide‐temperature range severely restrict the large‐scale applications for power generation. Here, using a self‐assembly protocol to deliver a homogeneous dispersion of 2D inclusion in matrix, the first evidence is shown that incorporation of MXene (Ti3C2Tx) into BST can simultaneously achieve the improved power factor and greatly reduced thermal conductivity. The oxygen‐terminated Ti3C2Tx with proper work function leads to highly increased electrical conductivity via hole injection and retained Seebeck coefficient due to the energy barrier scattering. Meanwhile, the alignment of Ti3C2Tx with the layered structure significantly suppresses the phonon transport, resulting in higher interfacial thermal resistance. Accordingly, a peak ZT of up to 1.3 and an average ZT value of 1.23 from 300 to 475 K are realized for the 1 vol% Ti3C2Tx/BST composite. Combined with the high‐performance composite and rational device design, a record‐high thermoelectric conversion efficiency of up to 7.8% is obtained under a temperature gradient of 237 K. These findings provide a robust and scalable protocol to incorporate MXene as a versatile 2D inclusion for improving the overall performance of TE materials toward high energy‐conversion efficiency.  相似文献   
2.
Phylogenetic distance among host species represents a proxy for host traits that act as biotic filters to shape host‐associated microbiome community structure. However, teasing apart potential biotic assembly mechanisms, such as host specificity or local species interactions, from abiotic factors, such as environmental specificity or dispersal barriers, in hyperdiverse, horizontally transmitted microbiomes remains a challenge. In this study, we tested whether host phylogenetic relatedness among 18 native Asteraceae plant species and spatial distance between replicated plots in a common garden affects foliar fungal endophyte (FFE) community structure. We found that FFE community structure varied significantly among host species, as well as host tribes, but not among host subfamilies. However, FFE community dissimilarity between host individuals was not significantly correlated with phylogenetic distance between host species. There was a significant effect of spatial distance among host individuals on FFE community dissimilarity within the common garden. The significant differences in FFE community structure among host species, but lack of a significant host phylogenetic effect, suggest functional differences among host species not accounted for by host phylogenetic distance, such as metabolic traits or phenology, may drive FFE community dissimilarity. Overall, our results indicate that host species identity and the spatial distance between plants can determine the similarity of their microbiomes, even across a single experimental field, but that host phylogeny is not closely tied to FFE community divergence in native Asteraceae.  相似文献   
3.
4.
5.
Inorganic–organic hybrid nanoparticles formed by lanthanide-doped nanostructures and organic ligands have been intensively studied, which could greatly increase their photoluminescence performance as a result of the energy transfer process from organic ligands to Ln3+ ions. However, the photoluminescence intensity and excitation spectral width are still quite limited on coordinating with a single type of organic ligand. In this work, Eu3+-doped LaF3 (LaF3:Eu3+) nanoparticles were prepared using a hydrothermal method, and were then hybridized with benzoic acid and thenoyltrifluoroacetone to form the hybrid nanostructures. After that, the hybrid nanostructures were mixed with 2,2′-azobisisobutyronitrile and methyl methacrylate to prepare the composites. The sample obtained by hybridization and composite doping with 5% Eu3+ exhibited the best photoluminescence performance. The excitation peak width and luminescence intensity of the hybrid nanostructures were significantly increased. The excitation spectral width of the inorganic–organic mixed hybrid nanostructures was particularly enhanced, and covered the whole ultraviolet band region of solar light on Earth. The prepared composites exhibited good optical properties.  相似文献   
6.
Lipases from different sources (porcine pancreas, Mucor miehei and Candida antarctica B) were covalently immobilized on a hydrophilic polyurethane composite (CoFoam). Their hydrolytic activities assayed with tributyrin were 0.55, 2.1 and 447 U g(-1), respectively. The activity of the C. antarctica B composite in the synthesis of methyl oleate in hexane was 8.8 U g(-1) compared to 60.6 U g(-1) for commercial Novozyme 435. The advantage of the CoFoam composite lies in the low pressure drop in a packed-bed reactor at fairly large flow rates. For example, at flow rates of 10-12 l min(-1), the pressure drop over 15 cm is typically 3 kPa.  相似文献   
7.
8.
9.
Collagen-phosphate composites (COL/β-TCP) are novel materials that have the potential to be used as bone analogues. The aim of our study was to develop a porous bioactive material composed of type I collagen, the main bone protein and tricalcium phosphate, the mineral phase of natural bone, and investigate their in vitro biocompatibility in a human dermal fibroblast culture system. In order to obtain the bioactive materials, type I collagen was isolated from bovine tendon and characterized by physicochemical methods. β-TCP was obtained from calcium carbonate by thermal decomposition at 900 °C temperature. The powder was examined with X-ray diffraction. Two variants of COL/β-TCP scaffolds (P1 and P2) were prepared and examined by scanning electron microscopy. Our results revealed a microporous structure with small white aggregates of β-TCP, non-homogenous scattered in the collagen framework without any preferential orientation. The biocompatibility of the obtained scaffolds was tested by biochemical and histological methods on human fibroblast cultures. Both materials acted as good subtrates for human dermal fibroblast proliferation and migration.  相似文献   
10.
In the present study, the main focus was the characterization and application of the by‐product lignin isolated through an industrial organosolv acid hydrolysis process from sugarcane bagasse, aiming at the production of bioethanol. The sugarcane lignin was characterized and used to prepare phenolic‐type resins. The analysis confirmed that the industrial sugarcane lignin is of HGS type, with a high proportion of the less substituted aromatic ring p‐hydroxyphenyl units, which favors further reaction with formaldehyde. The lignin–formaldehyde resins were used to produce biobased composites reinforced with different proportions of randomly distributed sisal fibers. The presence of lignin moieties in both the fiber and matrix increases their mutual affinity, as confirmed by SEM images, which showed good adhesion at the biocomposite fiber/matrix interface. This in turn allowed good load transference from the matrix to the fiber, leading to biobased composites with good impact strength (near 500 J m?1 for a 40 wt% sisal fiber‐reinforced composite). The study demonstrates that sugarcane bagasse lignin obtained from a bioethanol plant can be used without excessive purification in the preparation of lignocellulosic fiber‐reinforced biobased composites displaying high mechanical properties. Biotechnol. Bioeng. 2010;107:612–621. © 2010 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号