首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  2019年   3篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2007年   2篇
  2006年   1篇
  1999年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Carmine has been used in biological staining to demonstrate selectively nuclei, chromosomes or mucins, depending on the formulation. Throughout its history in science, complaints and frustrations have been expressed about dye quality. Inconsistencies in dye quality or identity have prevented thorough understanding of staining mechanisms and have caused many stain solutions to behave unsatisfactorily. The aim of this review is to (1) detail causes of these problems, which are rooted in history, geography and production, (2) offer ways to minimize problems and (3) provide modern explanations for stain behavior. Carmine is a “semi-synthetic” dye, i.e., a complex of aluminum and the natural dye cochineal (carminic acid). Carmine shows considerable batch-to-batch variability. Geography, politics, history, agricultural practices and iconography all contribute to the variability of cochineal. In addition, widely divergent manufacturing methods are used to produce carmine. Also, confusion in terminology has led to mislabeling. Pressure from the food industry for a more satisfactory colorant for acidic foods led to the introduction of a new dye, aminocarminic acid, which could enter the biological market inadvertantly. Improved methods of analysis should help the certification process by the Biological Stain Commission. Further standardization could be achieved by replacing most of the methods of solubilizing carmine. The majority of these methods use heat, which is likely to damage the dye molecule. Fortunately, carmine is readily dissolved by raising the pH of the aqueous solvent above 12, and a new form of the dye, now available commercially, is soluble in water without the need for heat or pH adjustment. Chemical structures and physical properties of carminic acid, carmine, aminocarminic acid and kermesic acid are reviewed. A new configuration for carmine is proposed, as well as possible changes to carminic acid and carmine molecules as a result of decomposition caused by heating. Each of the major classes of carmine-based stains is described as are possible mechanisms of attachment to specific substrates. Glycogen binds carmine through hydrogen bonding, and it is here that carmine decomposed by heat could have the greatest detrimental impact. Nuclei and chromosomes are stained via coordination bonds, perhaps supplemented by hydrogen bonds. Finally, acidic mucins react ionically with carmine. Specificity in the latter case may be due to unique polymeric carmine molecules that form in the presence of aluminum chloride.  相似文献   
2.
1. Until recently, neither the phycitid moth Cactoblastis cactorum nor the cochineal insect Dactylopius opuntiae have been satisfactory biological control agents of Opuntia stricta in South Africa.
2. In marked contrast, both of these agents have kept O. stricta under biological control for many decades in Australia.
3. In an attempt to improve the situation in South Africa, a stock of D. opuntiae was obtained from O. stricta in Australia during 1996.
4. Host-specificity tests confirmed that the newly imported D. opuntiae from Australia is a different biotype to the one already established in South Africa.
5. The Australian ('stricta') biotype thrives on O. stricta but is unable to develop satisfactorily on O. ficus-indica , while the converse is true for the South African ('ficus') biotype, which thrives on O. ficus-indica but fares poorly on O. stricta .
6. The integrity of the host-plant specificity of the two biotypes of D. opuntiae has important implications for biological control of Cactaceae in South Africa, and has greatly enhanced prospects that O. stricta can be brought under biological control successfully.  相似文献   
3.
Insects are often chemically defended against predators. There is considerable evidence for a group‐beneficial element to their defenses, and an associated potential for individuals to curtail their own investment in costly defense while benefitting from the investments of others, termed “automimicry.” Although females in chemically defended taxa often lay their eggs in clusters, leading to siblings living in close proximity, current models of automimicry have neglected kin‐selection effects, which may be expected to curb the evolution of such selfishness. Here, we develop a general theory of automimicry that explicitly incorporates kin selection. We investigate how female promiscuity modulates intragroup and intragenomic conflicts overinvestment into chemical defense, finding that individuals are favored to invest less than is optimal for their group, and that maternal‐origin genes favor greater investment than do paternal‐origin genes. We translate these conflicts into readily testable predictions concerning gene expression patterns and the phenotypic consequences of genomic perturbations, and discuss how our results may inform gene discovery in relation to economically important agricultural products.  相似文献   
4.
The Opuntia cochineal scale or false carmine cochineal scale, Dactylopius opuntiae (Cockerell) (Hemiptera: Dactylopiidae), is spreading rapidly in many countries, especially in the Mediterranean basin, where it has become a serious pest of prickly pear crops, Opuntia ficus‐indica (L.) Miller (Cactaceae). This crop is an important food resource both for humans and livestock. The cochineal was originally used as a biological agent to control cactaceous weeds in many countries where Opuntiaceae had been introduced. Currently, in some countries where the prickly pear is no longer considered a weed but a productive crop, as in the Mediterranean area, D. opuntiae has changed its role from a highly prized biological control agent to the status of serious pest. This paper provides an overview of the current knowledge on D. opuntiae for farmers and stakeholders in order to indicate the most appropriate way to limit or counteract the spread of this pest especially in new cultivated areas.  相似文献   
5.
6.
Carmine has been used in biological staining to demonstrate selectively nuclei, chromosomes or mucins, depending on the formulation. Throughout its history in science, complaints and frustrations have been expressed about dye quality. Inconsistencies in dye quality or identity have prevented thorough understanding of staining mechanisms and have caused many stain solutions to behave unsatisfactorily. The aim of this review is to (1) detail causes of these problems, which are rooted in history, geography and production, (2) offer ways to minimize problems and (3) provide modern explanations for stain behavior. Carmine is a “semi-synthetic” dye, i.e., a complex of aluminum and the natural dye cochineal (carminic acid). Carmine shows considerable batch-to-batch variability. Geography, politics, history, agricultural practices and iconography all contribute to the variability of cochineal. In addition, widely divergent manufacturing methods are used to produce carmine. Also, confusion in terminology has led to mislabeling. Pressure from the food industry for a more satisfactory colorant for acidic foods led to the introduction of a new dye, aminocarminic acid, which could enter the biological market inadvertantly. Improved methods of analysis should help the certification process by the Biological Stain Commission. Further standardization could be achieved by replacing most of the methods of solubilizing carmine. The majority of these methods use heat, which is likely to damage the dye molecule. Fortunately, carmine is readily dissolved by raising the pH of the aqueous solvent above 12, and a new form of the dye, now available commercially, is soluble in water without the need for heat or pH adjustment. Chemical structures and physical properties of carminic acid, carmine, aminocarminic acid and kermesic acid are reviewed. A new configuration for carmine is proposed, as well as possible changes to carminic acid and carmine molecules as a result of decomposition caused by heating. Each of the major classes of carmine-based stains is described as are possible mechanisms of attachment to specific substrates. Glycogen binds carmine through hydrogen bonding, and it is here that carmine decomposed by heat could have the greatest detrimental impact. Nuclei and chromosomes are stained via coordination bonds, perhaps supplemented by hydrogen bonds. Finally, acidic mucins react ionically with carmine. Specificity in the latter case may be due to unique polymeric carmine molecules that form in the presence of aluminum chloride.  相似文献   
7.
Three groups of insect dyes are described: three cochineal dyes, the kermes dye and the lac dye. The major color components are carminic acid, kermesic acid and laccaic acids, respectively. These dyes are red anthraquinone derivatives. The chemical structures are described. All of these dyes have extensive histories that are related briefly; however, only American cochineal is of commercial importance today. Two manufactured derivatives of cochineal, carmine and acid-stable carmine (4-aminocarminic acid) are described in some detail including the chemical identity, toxicity, stability, and staining and non-staining applications.  相似文献   
8.
Eight Cylindropuntia species have naturalised in Australia and pose serious economic, environmental and social impacts. The host range of four additional biotypes of D. tomentosus from southern USA was investigated. Feeding and development were restricted to the genus Cylindropuntia. However, they showed differences in specificity within this genus and some biotypes discriminated between the provenances of Cylindropuntia rosea and Cylindropuntia tunicata. Efficacy trials were conducted to determine whether populations of each biotype could be sustained on the naturalised Cylindropuntia species and if these populations could retard the growth or kill these plants. The ‘acanthocarpa’ biotype offers potential control of C. rosea (Lorne Station), while the ‘cylindropuntia sp.’ biotype shows great potential to control C. rosea (Grawin). The ‘cylindropuntia sp.’ biotype also had a high impact on Cylindropuntia kleiniae and Cylindropuntia imbricata, and a moderate impact on Cylindropuntia leptocaulis and Cylindropuntia prolifera. The ‘acanthocarpa?×?echinocarpa’ biotype had its greatest impact on C. tunicata (Grawin), killing this plant in 18 weeks. A fourth biotype, ‘leptocaulis’, was damaging to some species, but was less effective than the other biotypes. Cylindropuntia spinosior is the only naturalised species in Australia where no effective biocontrol agent has been found.  相似文献   
9.
胭脂虫质量的研究   总被引:6,自引:0,他引:6  
对云南省北亚热带、南亚热带和中亚热带三种气候类型昆明、景东、禄丰、通海等试验点养殖的3代胭脂虫雌成虫干体长(CL)、千虫重(KCW)、胭脂虫蜡(CW)、胭脂红酸(CA)研究表明:Ⅰ类(约88000头/kg)和Ⅱ类(约127000头/kg)胭脂虫与国外养殖的(70000~140000头/kg)一致,胭脂红酸含量平均为18.56%,与国外资料报道的17%~24%相吻合;胭脂虫的千虫重和胭脂红酸含量均与试验点、养殖方式、收虫季节无显著性差异,而与胭脂虫的类别呈显著性差异。将商品流通的胭脂虫分为四级,加工用胭脂虫分为三级,并初步提出胭脂虫的质量指标。  相似文献   
10.
The tomentose cochineal scale insect, Dactylopius tomentosus (Lamarck) (Hemiptera: Dactylopiidae), is an important biological control agent against invasive species of Cylindropuntia (Caryophyllales: Cactaceae). Recent studies have demonstrated that this scale is composed of host‐affiliated biotypes with differential host specificity and fitness on particular host species. We investigated genetic variation and phylogenetic relationships among D. tomentosus biotypes and provenances to examine the possibility that genetic diversity may be related to their host‐use pattern, and whether their phylogenetic relationships would give insights into taxonomic relatedness of their host plants. Nucleotide sequence comparison was accomplished using sequences of the mitochondrial cytochrome c oxidase I (COI) gene. Sequences of individuals from the same host plant within a region were identical and characterized by a unique haplotype. Individuals belonging to the same biotype but from different regions had similar haplotypes. However, haplotypes were not shared between different biotypes. Phylogenetic analysis grouped the monophyletic D. tomentosus into 3 well‐resolved clades of biotypes. The phylogenetic relationships and clustering of biotypes corresponded with known taxonomic relatedness of their hosts. Two biotypes, Fulgida and Mamillata, tested positive for Wolbachia (α‐Proteobacteria), a common endosymbiont of insects. The Wolbachia sequences were serendipitously detected by using insect‐specific COI DNA barcoding primers and are most similar to Wolbachia Supergroup F strains. This study is the first molecular characterization of cochineal biotypes that, together with Wolbachia sequences, contribute to the better identification of the biotypes of cochineal insects and to the biological control of cacti using host‐specific biotypes of the scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号