首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2019年   1篇
  2013年   2篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  1993年   1篇
  1990年   1篇
  1984年   1篇
  1982年   2篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
It is proposed that the activity of an epidermal cotransport system for Na+ and dicarboxylic amino acids accounts for the small amounts of L-glutamate and L-aspartate in the otherwise amino-acid-rich blood plasma of insects. This Na+-dependent transport system is responsible for more than 95% of the uptake of these amino acids into the larval epidermis of the beetle Tenebrio molitor. Kinetic analysis of uptake showed that the Na+-dependent co-transporter has medium affinity for L-glutamate and L-aspartate. The K m for L-glutamate uptake was 146 mol·l-1, and the maximum velocity of uptake (V max) was 12.1 pmol·mm-2 of epidermal sheet per minute. The corresponding values for L-aspartate were 191 mol·l-1 and 8.4 pmol·mm-2·min-1. The Na+/L-glutamate co-transporter has a stoichiometry of at least two Na+ ions for each L-glutamate-ion transported (n=217). The co-transporter has an affinity for Na+ equivalent to a K m of 21 mmol · l-1 Na+. Na+ is the only external ion apparently required to drive L-glutamate uptake. Li+ substitutes weakly for Na+. Removal of external K+ or addition of ouabain decreases uptake slowly over 1 h, suggesting that these treatments dissipate the Na+/K+ gradient by inhibiting epidermal Na+/K+ ATPase. Several structural analogues of L-glutamate inhibit the medium-affinity uptake of L-glutamate. The order of potency with which these competitive inhibitors block glutamate uptake is L-cysteatethreo-3-hydroxy-Dl-aspartate > D-aspartateL-aspartate> L-cysteine sulphinate > L-homocysteateD-glutamate. L-trans-Pyrrolidine-2,4-dicarboxylate, a potent inhibitor of L-glutamate uptake in mammalian synaptosomes, is a relatively weak blocker of epidermal uptake. The epidermis takes up substantially more L-glutamate by this Na+-dependent system than tissues such as skeletal muscle and ventral nerve cord. The epidermis may be a main site regulating blood L-glutamate levels in insects with high blood [Na+]. Because L-glutamate and L-aspartate stimulate skeletal muscle in insects, a likely role for epidermal L-glutamate/L-aspartate transporter is to keep the level of these excitatory amino acids in the blood below the postsynaptic activation thresholds.Abbreviation ac acetate - Ch choline - CNS central nervous system - cpm counts per minute - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetic acids - HPLC high performance liquid chromatography - K m Michaelis constant - n app apparent number - NMG N-methyl-D-glucamine - Pipes Piperazine-N,N-bis-[2-ethanesulfonic acid] - SD standard deviation - TEA tetraethyl-ammonium - V velocity of uptake - V max maximum velocity of uptake  相似文献   
2.
Outward sodium and potassium cotransport in human red cells   总被引:7,自引:0,他引:7  
Summary This paper reports some kinetic properties of Na–K cotransport in human red cells. All fluxes were measured in the presence of 10–4 M ouabain. We measured Na and K efflux from cells loaded by the PCMBS method to contain different concentrations of these ions into a medium that contained neither Na nor K (MgCl2-sucrose substitution) in the absence and presence of furosemide. Furosemide inhibited 30–60% of the total efflux depending on the internal ion concentration and the individual subject. We took the furosemide-sensitive fluxes to be a measure of Na–K cotransport. The ratio of Na to K cotransport was 1 over the entire range of internal Na and K concentrations studied. When Na was substituted for K as the only internal cation, cotransport was maximally activated when the Na and K concentrations were between 20 and 90 mmol/liter cells. The concentration of internal Na required to produce half-maximal cotransport was about 13±4 mmol/liter cells (n=4), while the comparable concentration of K was somewhat lower. The activation curve was definitely sigmoid in character, suggesting that at least two Na ions are involved in the transport process. The maximum of Na–K cotransport was about 0.5±0.15 mmol/liter cells × hr (n=5); it had a flat maximum in the medium at about pH 7.0, decreasing in both the acid and alkaline sides. furosemide-resistant effluxes were found to be linear functions of internal Na and K concentrations and to yield rate coefficients of 0.019±0.002 hr–1 and 0.014±0.002 hr–1 (n=7), respectively. These values are of the same order of magnitude expected of ions moving across phospholipid bilayers.Charge de Recherches CNRS.  相似文献   
3.
Summary Uptake of -aminoisobutyric acid (AIB) was examined in Ehrlich ascites tumor cells treated with the cation-exchange ionophore nigericin (20 g/ml). Membrane voltages were measured using the voltage-sensitive dye diethyloxadicarbocyanine (DOCC). In normal phosphate-buffered media, nigericin changed the distribution ratios of Na+ and K+ (the ratio of intra- to extracellular concentrations) nearly to unity, but AIB was still accumulated to a distribution ratio of 9.0. When all but 40mm Na+ in the medium was replaced by choline, nigericin resulted in K+ loss and Na+ gain and both cation distribution ratios approached 2.8–3.4, as would be expected if both ions were distributing near electrochemical equilibrium with a membrane voltage in the range of –28 to –33 mV. This conclusion was supported by the observation that the addition of 5×10–7 m valinomycin to the nigericin-treated cell suspension produced no change in DOCC absorbance. In spite of the apparent zero electrochemical potential gradients for Na+ and K+, AIB was accumulated to a distribution ratio of 5.4 in the low-Na+ medium. Addition of 0.1mm oubain or 50 m vanadate did not alter the extent of AIB accumulation as would have been expected if a large component of the membrane voltage were due to electrogenic operation of the (Na++K+)-ATPase. Addition of lactate, pyruvate or glucose increased the AIB distribution ratios to 11.9, 9.4 and 15.3, respectively. The effect of glucose could be explained, at least in part, by an enhanced Na+ electrochemical potential gradient. However, neither lactate nor pyruvate produced any change either in membrane voltage or the intracellular Na+ concentration. Therefore, these results confirm the existence of a metabolic energy source which is coupled to AIB accumulation and operates in addition to the Na+ co-transport mechanism, and which is augmented by metabolic substrates such as lactate and pyruvate.  相似文献   
4.
The basic structure and the physiological function of human sweat glands were reviewed. Histochemical and cytochemical techniques greatly contributed the elucidation of the ionic mechanism of sweat secretion. X-ray microanalysis using freeze-dried cryosections clarified the level of Na, K, and Cl in each secretory cell of the human sweat gland. Enzyme cytochemistry, immunohistochemistry and autoradiography elucidated the localization of Na,K-ATPase. These data supported the idea that human eccrine sweat is produced by the model of N-K-2Cl cotransport. Cationic colloidal gold localizes anionic sites on histological sections. Human eccrine and apocrine sweat glands showed completely different localization and enzyme sensitivity of anionic sites studied with cationic gold. Human sweat glands have many immunohistochemical markers. Some of them are specific to apocrine sweat glands, although many of them stain both eccrine and apocrine sweat glands. Histochemical techniques, especially immunohistochemistry using a confocal laser scanning microscope and in situ hybridization, will further clarify the relationship of the structure and function in human sweat glands.  相似文献   
5.
Proton co-transport of sugars in phloem loading   总被引:2,自引:2,他引:0  
F. Malek  D. A. Baker 《Planta》1977,135(3):297-299
Loading of 14C-labelled sugars from the hollow petiole of Ricinus communis L. was stimulated by potassium and by low pH in that both the 14C-activity and the sugar concentration of phloem sap collected from a nearby incision increased. A pH drop was observed in the solution perfusing a hollow petiole. This pH drop was greater in the presence of potassium and less in the presence of sugars, while the uncoupler CCCP induced a pH rise in the perfusing solution. Sugars were detected in the perfusing solution when it was buffered at pH>9. A model is proposed for a proton co-transport of sugars from the free space driven by a linked proton efflux/potassium influx pump.  相似文献   
6.
S20787 has recently been proposed to be a selective Cl--HCO3- anion exchange (AE) inhibitor in rat cardiomyocytes. The AE transporter mediates sarcolemmal acid influx but is only one part of the cardiac cell's dual acid loading mechanism, the other part being a sarcolemmal Cl--OH- exchanger (CHE). We have therefore (1) investigated the differential effects of S20787 on the AE and CHE transporters in isolated guinea pig ventricular myocytes and (2) re-examined the influence of the drug on other sarcolemmal acid transporters by monitoring its effect on intracellular pH (pH(i)) recovery from alkali or acid loads. The pH(i) was measured using microspectrofluorimetry (carboxy-SNARF-1). The results indicate that CHE activity was unaffected by the drug (1-20 microM), whereas up to 78% of AE activity was blocked (K(i) = 3.9 microM). Thus, S20787 targets only the AE component of the dual acid influx system. Activities of other acid-transporting carriers, such as Na+-H+ exchange, Na+-HCO3- co-transport and the monocarboxylic acid transporter, were unaffected by the drug. The inhibitory efficacy of S20787 for AE in guinea pig cardiomyocytes appears to be considerably higher (approximately 78%) than proposed previously for rat cardiomyocytes (50%). This is most likely because, in both cells, a significant fraction (20-30%) of acid influx is mediated through the S20787-insensitive CHE transporter. Previous studies made no allowance for the CHE component, which would result in an underestimation. S20787 is thus a highly selective AE inhibitor which may be useful as an experimental tool and a potential cardiac protective agent in the heart.  相似文献   
7.
A new synthetic route to prostaglandin-F1 skeleton from readily accessible 2-carboxyhexyl-cyclopentane-1,3,4-trione was achieved. The route included 2-alkyl-3-cyano-4-hydroxy-2-cyclopenten-1-one as an intermediate.  相似文献   
8.
9.
The sodium bicarbonate co-transporter, NBC3, is expressed in a range of tissues including heart, skeletal muscle and kidney, where it modulates intracellular pH and bicarbonate levels. NBC3 has a three-domain structure: 67 kDa N-terminal cytoplasmic domain, 57 kDa membrane domain and an 11 kDa C-terminal cytoplasmic domain (NBC3Ct). The role of C-terminal domains as important regulatory regions is an emerging theme in bicarbonate transporter physiology. This study determined the functional role of human NBC3Ct and characterized its structure using biochemical techniques. The NBC3 C-terminal domain deletion mutant (NBC3ΔCt) had only 12±5% of wild-type transport activity. This low activity is attributable to low steady-state levels of NBC3ΔCt and almost complete retention inside the cell, as assessed by immunoblots and confocal microscopy, suggesting a role of NBC3Ct in cell surface processing. To characterize the structure of NBC3Ct, amino acids 1127–1214 of NBC3 were expressed as a GST fusion protein (GST.NBC3Ct). GST.NBC3Ct was cleaved with PreScission Protease? and native NBC3Ct could be purified to 94% homogeneity. Gel permeation chromatography and sedimentation velocity ultracentrifugation of NBC3Ct indicated a Stokes radius of 26 and 30 Å, respectively. Shape modelling revealed NBC3Ct as a prolate shape with long and short axes of 19 and 2 nm, respectively. The circular dichroism spectra of NBC3Ct did not change over the pH 6.2–7.8 range, which rules out a large change of secondary structure as a component of pH sensor function. Proteolysis with trypsin and chymotrypsin identified two proteolytically sensitive regions, R1129 and K1183-K1186, which could form protein interaction sites.  相似文献   
10.
Summary Presynaptic GABAergic nerve terminals accumulate -aminobutyric acid (GABA) by a sodium-dependent carrier mechanism in which two Na+ are co-transported with one GABA. We have examined the influence of external GABA and cations on GABA efflux from3H-GABA loaded rat brain synaptosomes, to determine whether or not the carriers can also mediate GABA efflux. We observed that, in Ca-free media (to minimize Ca-dependent evoked release), external GABA promotes GABA efflux when the medium contains Na+, butinhibits GABA efflux in the absence of Na+. The efflux of GABA into Ca-free media is stimulated by depolarization (either with veratridine or increased external K+). These data, and published data on the internal Na+ dependence of GABA efflux into Ca-free media, indicate that exiting GABA is cotransported with Na+. The stimulatory effect of depolarization is consistent with efflux of Na+ along with the uncharged GABA. The (carrier-mediated) efflux is also stimulated when the carriers cycle inward with Na++GABA. The inhibitory effect of GABA in Na+-free media implies that GABA can bind to unloaded carriers and that the carriers loaded only with GABA cycle very slowly, if at all. Our data, and data from the literature, can be fitted to a simple model with sequential binding of solutes: external GABA binds to the carrier first, and only the free or fully-loaded (with 2Na++1GABA) carriers can cycle. Other binding sequences and random binding, do not fit the experimental observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号