首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   2篇
  2023年   2篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2005年   2篇
  2004年   1篇
  1997年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
马贞  魏静 《生命科学》2012,(10):1098-1104
热休克蛋白90(heat shock protein90,Hsp90)是一类在生物进化中高度保守的蛋白,与细胞凋亡密切相关,作为抗癌新靶标已经得到了广泛的关注。相关研究表明,Hsp90可以通过多种方式调控ATPase的活性,如自身构象改变、与辅伴侣分子形成复合物以及转录后修饰等。在Hsp90基本构象改变的基础上,综述了不同因素对ATPase的调控作用,着重阐述近几年的研究进展,为进一步研究Hsp90调控ATPase的机制提供一定的参考。  相似文献   
2.
In eukaryotes, the molecular chaperones Hsp90 and Hsp70 are connected via the co-chaperone Sti1/Hop, which allows transfer of clients. Here, we show that the basic functions of yeast Sti1 and human Hop are conserved. These include the simultaneous binding of Hsp90 and Hsp70, the inhibition of the ATPase activity of Hsp90, and the ability to support client activation in vivo. Importantly, we reveal that both Hop and Sti1 are subject to inhibitory phosphorylation, although the sites modified and the influence of regulatory phosphorylation is species specific. Phospho-mimetic variants have a reduced ability to activate clients in vivo and different affinity for Hsp70. Hop is more tightly regulated, as phosphorylation affects also the interaction with Hsp90 and induces structural rearrangements in the core part of the protein.  相似文献   
3.
4.
5.
辅助伴侣分子Cdc37蛋白的研究进展   总被引:1,自引:0,他引:1  
细胞分裂周期蛋白Cdc37最初是在芽殖酵母中发现的细胞周期相关蛋白。随后的研究表明Cdc37具有伴侣分子活性,可以特异地募集一系列的蛋白激酶结合到热激蛋白90(Hsp90)上,形成特定的分子伴侣复合体,参与维持蛋白的稳定性和激酶活性。Cdc37参与了细胞内的多项生命活动,在细胞周期、信号转导和基因表达中都起着重要的作用。由于Cdc37在肿瘤组织中特异性地高表达,使其成为肿瘤治疗中一个重要的分子靶点。  相似文献   
6.
Hsp90 is a molecular chaperone essential for the activation and assembly of many key eukaryotic signalling and regulatory proteins. Hsp90 is assisted and regulated by co-chaperones that participate in an ordered series of dynamic multiprotein complexes, linked to Hsp90s conformationally coupled ATPase cycle. The co-chaperones Aha1 and Hch1 bind to Hsp90 and stimulate its ATPase activity. Biochemical analysis shows that this activity is dependent on the N-terminal domain of Aha1, which interacts with the central segment of Hsp90. The structural basis for this interaction is revealed by the crystal structure of the N-terminal domain (1-153) of Aha1 (equivalent to the whole of Hch1) in complex with the middle segment of Hsp90 (273-530). Structural analysis and mutagenesis show that binding of N-Aha1 promotes a conformational switch in the middle-segment catalytic loop (370-390) of Hsp90 that releases the catalytic Arg 380 and enables its interaction with ATP in the N-terminal nucleotide-binding domain of the chaperone.  相似文献   
7.
The DnaK-tetratricopeptide repeat (DnaK-TPR) gene (ToxoDB ID, TGME49_002020) is expressed predominantly at the bradyzoite stage. DnaK-TPR protein has a heat shock protein (DnaK) and tetratricopeptide repeat (TPR) domains with amino acid sequence similarity to the counterparts of other organisms (40.2–43.7% to DnaK domain and 41.1–66.0% to TPR domain). These findings allowed us to infer that DnaK-TPR protein is important in the tachyzoite-to-bradyzoite development or maintenance of cyst structure although the function of this gene is still unknown. An immunofluorescence assay (IFA) revealed that DnaK-TPR protein was expressed in Toxoplasma gondii-encysted and in vitro-induced bradyzoites and distributed in the whole part of parasite cells. We conducted yeast two-hybrid screening to identify proteins interacting with DnaK-TPR protein, and demonstrated that DnaK-TPR protein interacts with p23 co-chaperone protein (Tgp23). It was expected that DnaK-TPR protein would have a function as a molecular chaperon in bradyzoite cells associated with Tgp23. Possible mechanisms for this gene are discussed.  相似文献   
8.
Co-chaperon p23 has been well established as molecular chaperon for the heat shock protein 90 (Hsp90) that further leads to immorality in cancer cells by providing defense against Hsp90 inhibitors, and as stimulating agent for generating overexpressed antiapoptotic proteins, that is, Hsp70 and Hsp27. The natural compounds such as catechins from Camellia sinensis (green tea) are also well known for inhibition activity against various cancer. However, molecular interaction profile and potential lead bioactive compounds against co-chaperon p23 from green tea are not yet reported. To this context, we study the various secondary metabolites of green tea against co-chaperon p23 using structure-based virtual screening from Traditional Chinese Medicine (TCM) database. Following 26 compounds were obtained from TCM database and further studied for extra precision molecular docking that showed binding score between −10.221 and −2.276 kcal/mol with co-chaperon p23. However, relative docking score to known inhibitors, that is, ailanthone (−4.54 kcal/mol) and gedunin ( 3.60 kcal/mol) along with ADME profile analysis concluded epicatechin (−7.013 kcal/mol) and cis-theaspirone (−4.495 kcal/mol) as potential lead inhibitors from green tea against co-chaperone p23. Furthermore, molecular dynamics simulation and molecular mechanics generalized born surface area calculations validated that epicatechin and cis-theaspirone have significantly occupied the active region of co-chaperone p23 by hydrogen and hydrophobic interactions with various residues including most substantial amino acids, that is, Thr90, Ala94, and Lys95. Hence, these results supported the fact that green tea contained potential compounds with an ability to inhibit the cancer by disrupting the co-chaperon p23 activity.  相似文献   
9.
10.
The hscA and hscB genes of Escherichia coli encode novel chaperone and co-chaperone proteins, designated Hsc66 and Hsc20, respectively. We have overproduced and purified Hsc66 and Hsc20 in high yield in E. coli and describe their initial characterization including absorbance, fluorescence, and circular dichroism spectra. Immunoblot analyses of E. coli cultures using antisera to Hsc66 and Hsc20 raised in rabbits establish that Hsc66 and Hsc20 are constitutively expressed at levels corresponding to cell concentration approximately 20 microM and approximately 10 microM, respectively. The levels do not change appreciably following heat shock (44 degrees C), but a small increase in Hsc20 is observed following a shift to 10 degrees C. Purified Hsc66 exhibits a low intrinsic ATPase activity (approximately 0.6 min-1 at 37 degrees C), and Hsc20 was found to stimulate this activity up to 3.8-fold with half-maximal stimulation at a concentration approximately 5 microM. These findings suggest that Hsc66 and Hsc20 comprise a molecular chaperone system similar to the prokaryotic DnaK/DnaJ and eukaryotic hsp70/hsp40 systems. Sequence differences between Hsc66 and Hsc20 compared to other members of this chaperone family, however, suggest that the Hsc66/Hsc20 system will display different peptide binding specificity and that it is likely to be subject to different regulatory mechanisms. The high level of constitutive expression and the lack of a major response to temperature changes suggest that Hsc66 and Hsc20 play an important cellular role(s) under non-stress conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号