首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   843篇
  免费   177篇
  国内免费   217篇
  2024年   8篇
  2023年   46篇
  2022年   35篇
  2021年   44篇
  2020年   55篇
  2019年   67篇
  2018年   59篇
  2017年   61篇
  2016年   61篇
  2015年   49篇
  2014年   54篇
  2013年   72篇
  2012年   47篇
  2011年   38篇
  2010年   38篇
  2009年   45篇
  2008年   38篇
  2007年   44篇
  2006年   44篇
  2005年   31篇
  2004年   17篇
  2003年   24篇
  2002年   24篇
  2001年   21篇
  2000年   21篇
  1999年   15篇
  1998年   12篇
  1997年   14篇
  1996年   11篇
  1995年   4篇
  1994年   12篇
  1993年   12篇
  1992年   5篇
  1991年   16篇
  1990年   10篇
  1989年   10篇
  1988年   7篇
  1987年   7篇
  1986年   7篇
  1985年   12篇
  1984年   9篇
  1983年   3篇
  1982年   6篇
  1981年   8篇
  1980年   5篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   1篇
排序方式: 共有1237条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Cladocera in space and time: Analysis of lake sediments   总被引:6,自引:6,他引:0  
Shells of Bosminidae and Chydoridae are quantitatively preserved in lake sediments. The chronological deposition of these remains provides the means for longterm observation of these Cladocera, both in terms of species and communities. Chydorid analysis, as based on subfossil assemblages, is an analysis of community and provides direct observation of community dynamics over extended periods of time. It has proved to be a valuable method to obtain information on the influence of environmental factors and time on community characteristics. Morphological variation inBosmina (Eubosmina) has been followed for some thousand years. This is of special interest for the evaluation of taxonomic rank (species, forms) if closely related taxa have co-existed. Bosmina successions, as well as shifts in the chydorid fauna, are related to environmental change. Thus, cladoceran analysis of lake sediments provides information on the developmental history of lakes and allows observation of the effects of longterm environmental changes, such as climatic changes and eutrophication.  相似文献   
6.
A series of eight experiments was conducted using large pots to (1) find the most effective date, site, concentration of K-solution and K-salt for foliar K-fertilization of maize plants (Zea mays, L.) grown with sufficient K-supply in soil, (2) explain why maize responded to the K-treatment, and (3) examine the influence of various levels of N and P supplies on the effectiveness of K-fertilizer via the leaves. A single spraying on sweet maize and field maize on any day between 50% tasselling date to 10 days after tasselling shortened maturity date, increased grain yield, stover yield, grain-stover ratio, absorption of N, P, K, Ca and Mg, sweetness of young grain (of sweet maize), and crude protein content of grain. However spraying on the third day after 50% tasselling was most effective. The second application later than 7 days after the 50% tasselling date suppressed the effects of spraying on the most effective date. In application of many repetitive sprayings covering the most effective date, a spraying program with late spraying could reduce grain yield. KNO3, 2.5% KNO3-solution, and applications on all aerial parts were found to be the most effective. Increases in grain yield for spraying on all aerial parts, spraying on ear leaf only, spraying on all leaves above ear leaf and applying K to soil were 74%, 51%, 41% and 23%, respectively. The foliar K-fertilization affected maize by stimulating chlorophyll synthesis and not by increasing leaf area. A balance in N and K supplies was determined to be effective for the K-fertilization.  相似文献   
7.
Summary An analysis is presented of genetic differentiation in the non-transcribed spacers of ribosomal DNA (NTS rDNA). Diversity, environmental correlates and the phylogenetic relationships are examined within and between species of the actively speciating subterranean mole rat, superspeciesSpalax ehrenbergi (2n=52, 54, 58, 60) in Israel. This analysis is based on a previous study of the geographic distribution of restriction fragment length polymorphisms of NTS rDNA. Here we present results indicating that NTS rDNA diversity exists mostly (66%) within populations, while 20% is between populations within species, and 14% between species. Multivariate discriminant analysis succeeded in separating 10 of the 13 populations (77%) into their correct chromosomal species, on the basis of the combination of three NTS rDNA repetypes. The phylogenetic relationships suggest that the complex involves two pairs of closely related species (2n=52–54 and 2n=58–60). NTS rDNA diversity, as well as the decrease southward in frequency of repetype C, are correlated with climatic factors of humidity and temperature. These data are discussed in terms of the evolutionary forces of migration and selection which may cause NTS rDNA differentiation. Climatic selection appears to be the major differentiating factor of NTS rDNA.  相似文献   
8.
Glucose-limited, continuous cultures (dilution rate 0.1 h-1) of Streptococcus bovis JB1 fermented glucose at a rate of 3.9 mol mg protein-1 h-1 and produced acctate, formate and ethanol. Based on a maximum ATP yield of 32 cells/mol ATP (Stouthamer 1973) and 3 ATP/glucose, the theoretical glucose consumption for growth would have been 2.1 mol mg protein-1 h-1. Because the maintenance energy requirement was 1.7 mol/mg protein/h (Russell and Baldwin 1979), virtually all of the glucose consumption could be explained by growth and maintenance and the YATP was 30. Glucose-limited, continuous cultures produced heat at a rate of 0.29 mW/mg protein, and this value was similar to the enthalpy change of the fermentation (0.32 mW/mg protein). Batch cultures (specific growth rate 2.0 h-1) fermented glucose at a rate of 81 mol mg protein-1 h-1, and produced only lactate. The heat production was in close agreement with the theoretical enthalpy change (1.72 versus 1.70 mW/mg protein), but only 80% of the glucose consumption could be accounted by growth and maintenance. The YATP of the batch cultures was 25. Nitrogen-limited, glucose-excess, non-growing cultures fermented glucose at a rate of 6.9 mol mg protein-1 h-1, and virtually all of the enthalpy for this homolactic fermentation could be accounted as heat (0.17 mW/mg protein). The nitrogenlimited cultures had a membrane potential of 150 mV, and nearly all of the heat production could be explained by a futile cycle of protons through the cell membrane (watts = amperes x voltage where H+/ATP was 3). The membrane voltage of the nitrogen-limited cells was higher than the glucose-limited continuous cultures (150 versus 80 mV), and this difference in voltage explained why nitrogen-limited cultures consumed glucose faster than the maintenance rate. Batch cultures had a membrane potential of 100 mV, and this voltage could not account for increased glucose consumption (more than growth plus maintenance). It appears that another mechanism causes the increased heat production and lower growth efficiency of batch cultures.  相似文献   
9.
Thiobacillus tepidarius, isolated from the hot springs at Bath, Avon, UK, grew optimally at 43–45°C and pH 6.0–7.5 on thiosulphate or tetrathionate. In batch culture, thiosulphate was oxidized stoichiometrically to tetrathionate, with a rise in pH. The tetrathionate was then oxidized to sulphate, supporting growth and producing a fall in pH to a minimum of ph 4.8. The organism contained high levels of thiosulphate-oxidizing enzyme, rhodanese and ribulose bisphosphate carboxylase. It was obligately chemolithotrophic and autotrophic. In chemostat culture, T. tepidarius grew autotrophically with the following sole energy-substrates: sulphide, thiosulphate, trithionate, tetrathionate, hexathionate or heptathionate. Thiocyanate, dithionate and sulphite were not used as sole substrates, although sulphite enhanced growth yields in the presence of thiosulphate. Maximum specific growth rate on tetrathionate was 0.44 h-1. True growth yields (Y max) and maintenance coefficients (m) were calculated for sulphide, thiosulphate, trithionate and tetrathionate and observed yields at a single fixed dilution rate compared with those on hexathionate and heptathionate. Mean values for Y max, determined from measurements of absorbance, dry wt, total organic carbon and cell protein, were similar for sulphide, thiosulphate and trithionate (10.9 g dry wt/mol substrate) as expected from their equivalent oxygen consumption for oxidation. Y max for tetrathionate (20.5) and the relative Y o values (as g dry wt/g atom oxygen consumed) for thiosulphate and all four polythionates indicated that substrate level phosphorylation did not contribute significantly to energy conservation. These Y max values were 40–70% higher than any of those previously reported for obligately aerobic thiobacilli. Mean values for m were 6.7 mmol substrate oxidized/g dry wt·h for sulphide, thiosulphate and trithionate, and 2.6 for tetrathionate.Abbreviation PIPES Piperazine-N,N-bis(ethane sulphonic acid)  相似文献   
10.
The authors examined relationships between Kira's warmth index (WI) and four other important thermal indices: the sums of daily mean temperatures above 5°C and 10°C, Thornthwaite's potential evapotranspiration (PE) and Holdridge's annual biotemperature. The thermal records of 671 meteorological stations evenly located all over China were used to make these comparisons. Close correlations were found within the four relationships, and accordingly WI was used to analyse the thermal distributions of the main vegetation types. Vegetation types around the 671 stations were read from a vegetation map with a scale of 1/4000000. Vegetation types at 269 stations corresponded to the natural or seminatural vegetation, and 29 vegetation types were distinguished by arranging the 269 data into the same or similar types. The geographical distribution of these 29 types and the corresponding main climatic features were described. The relations between WI and distribution of these vegetation types were discussed in detail. As a result, WI values (°C month) corresponding to the vegetation zones could be summarized as follows: (1) arctic or alpine vegetation zone: 0–15; (2) boreal or subalpine vegetation zone: 15-(50–55); (3) cool-temperate vegetation zone: (50–55)–(80–90); (4) warm-temperate vegetation zone: (80–90)–(170–180). These values almost coincided with Kira's values. Chinese postgraduate student in Japan sent by the Chinese Government.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号