首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  12篇
  2020年   2篇
  2019年   1篇
  2016年   1篇
  2013年   6篇
  2007年   1篇
  1988年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Many inflammatory and autoimmune diseases are treated using synthetic glucocorticoids. However, excessive glucocorticoid can often cause unpredictable effects including muscle atrophy. Endogenous glucocorticoid levels robustly fluctuate in a circadian manner and peak just before the onset of the active phase in both humans and nocturnal rodents. The present study determines whether muscle atrophy induced by exogenous glucocorticoid can be avoided by optimizing dosing times. We administered single daily doses of the glucocorticoid analog dexamethasone (Dex) to mice for 10 days at the times of day corresponding to peak (early night) or trough (early morning) endogenous glucocorticoid levels. Administration at the acrophase of endogenous glucocorticoids significantly attenuated Dex-induced wasting of the gastrocnemius (Ga) and tibialis anterior (TA) muscles that comprise mostly fast-twitch muscle fibers. Real-time RT-PCR revealed that the Dex-induced mRNA expression of genes encoding the atrophy-related ubiquitin ligases Muscle Atrophy F-box (Fbxo32, also known as MAFbx/Atrogin-1) and Muscle RING finger 1 (Trim63, also known as MuRF1) in the Ga and TA muscles was significantly attenuated by Dex when administered during the early night. Dex negligibly affected the weight of the soleus (So) muscle that mostly comprises slow-twitch muscle fibers, but significantly and similarly decreased the weight of the spleen at both dosing times. These results suggest that glucocorticoid-induced muscle atrophy can be attenuated by optimizing the dosing schedule.  相似文献   
2.
Many asthmatic patients experience aggravation of symptoms overnight resulting in disruption of their sleep. Sustained-release theophylline represents at this time a major bronchodilator medication which possesses a sufficient duration of activity to avert the nocturnal breathing distress of asthma. Circadian rhythm-adapted theophylline schedules consisting of unequal dosing—more or all the drug taken in the evening—have proven efficacious in clinical investigations for certain patients. Although the kinetic behavior of some formulations is affected by food, the circadian rhythm-adapted schedules represent a significant step forward toward the goal of optimizating sustained-release theophyllines for patients who experience nighttime symptoms.  相似文献   
3.
The cardiovascular system is well organized in time. Mechanisms of regulation and pathophysiological events are not evenly distributed over the 24-h scale. Moreover, certain diseases may even alter the physiological circadian pattern in the cardiovascular system. This observation bares implications for drug treatment, e.g. regarding drug formulations and dosing time intervals. Pitfalls may arise from neglecting circadian phase-dependency in pharmacokinetics and in the concentration-dependent effect relationship. Moreover, different types of drugs may be superior to others when circadian time-related symptoms are concerned. There is sound evidence that “time-of-day” has to be included in our diagnostic and therapeutic strategies.  相似文献   
4.
Although the circadian pattern of cyclosporine (CSA) pharmacokinetics and toxicity has been described previously in both animal and clinical studies, the mechanism of this action is unknown. The present study compared the pharmacokinetics and experimental nephrotoxicity of chronic CSA in both the genetically-hyperlipidemic rat model and the lean litter-mate. Once daily dosing (25 mg/kg via gavage) was either at the start of the active (1900) or inactive (0700) cycle (Nov 1987 to Jan 1988). Serial serum samples following the final dose were assayed by both polyclonal (nonspecific) and monoclonal (specific for parent CSA) RIA. Renal toxicity was assessed by 24-hr creatinine clearances, fractional clearances of sodium and potassium, and inulin clearances (CIN). Despite a greater than 2-fold increase in serum CSA concentrations, there were no changes in renal function in obese rats dosed at the start of the active period compared to the inactive period. Furthermore, mean CIN of the lean group administered drug at the start of the active period was not significantly different from time-matched placebo-treated lean rats. However, there was an 80% drop in CIN in rats treated with CSA at the start of the inactive period compared to control group. There were no differences in electrolyte handling. Insulin concentrations, independent of time of dosing, were markedly elevated in obese rats dosed CSA compared to placebo-treated obese or both lean groups. Serum triglyceride levels were significantly correlated with pharmacokinetic parameters of total but not parent CSA. In summary, significant differences in toxicity were observed due to time of dosing and lipid profiles. Although the mechanism of this action remains unclear, it appears that increased non-fasting serum triglyceride levels following the active period most likely reduced CSA distribution into kidney tissue preventing the dose-limiting nephrotoxicity.  相似文献   
5.
Roscovitine is a selective Cdk-inhibitor that is under investigation in phase II clinical trials under several conditions, including chemotherapy. Tumor growth inhibition has been previously shown to be affected by the dosing time of roscovitine in a Glasgow osteosarcoma xenograft mouse model. In the current study, we examined the effect of dose timing on the pharmacokinetics, biodistribution and metabolism of this drug in different organs in B6D2F1 mice. The drug was orally administered at resting (ZT3) or activity time of the mice (ZT19) at a dose of 300?mg/kg. Plasma and organs were removed at serial time points (10, 20 and 30?min; 1, 2, 4, 6, 8, 12 and 24?h) after the administration. Roscovitine and its carboxylic metabolite concentrations were analyzed using HPLC-UV, and pharmacokinetic parameters were calculated in different organs. We found that systemic exposure to roscovitine was 38% higher when dosing at ZT3, and elimination half-life was double compared to when dosing at ZT19. Higher organ concentrations expressed as (organ/plasma) ratio were observed when dosing at ZT3 in the kidney (180%), adipose tissue (188%), testis (132%) and lungs (112%), while the liver exposure to roscovitine was 120% higher after dosing at ZT19. The metabolic ratio was approximately 23% higher at ZT19, while the intrinsic clearance (CLint) was approximately 67% higher at ZT19, indicating faster and more efficient metabolism. These differences may be caused by circadian differences in the absorption, distribution, metabolism and excretion processes governing roscovitine disposition in the mice. In this article, we describe for the first time the chronobiodistribution of roscovitine in the mouse and the contribution of the dosing time to the variability of its metabolism. Our results may help in designing better dosing schedules of roscovitine in clinical trials.  相似文献   
6.
7.
The chronopharmacology refers to the utilization of physiological circadian rhythms to optimize the administration time of drugs, thus increasing their efficacy and safety, or reducing adverse effects. Simvastatin is one of the most widely prescribed drugs for the treatment of hypercholesterolaemia, hyperlipidemia and coronary artery disease. There are conflicting statements regarding the timing of simvastatin administration, and convincing experimental evidence remains unavailable. Thus, we aimed to examine whether different administration times would influence the efficacy of simvastatin. High‐fat diet‐fed mice were treated with simvastatin at zeitgeber time 1 (ZT1) or ZT13, respectively, for nine weeks. Simvastatin showed robust anti‐hypercholesterolaemia and anti‐hyperlipidemia effects on these obese mice, regardless of administration time. However, simvastatin administrated at ZT13, compared to ZT1, was more functional for decreasing serum levels of total cholesterol, triglycerides, non‐esterified free fatty acids and LDL cholesterol, as well as improving liver pathological characteristics. In terms of possible mechanisms, we found that simvastatin did not alter the expression of hepatic circadian clock gene in vivo, although it failed to change the period, phase and amplitude of oscillation patterns in Per2::Luc U2OS and Bmal1::Luc U2OS cells in vitro. In contrast, simvastatin regulated the expression of Hmgcr, Mdr1 and Slco2b1 in a circadian manner, which potentially contributed to the chronopharmacological function of the drug. Taken together, we provide solid evidence to suggest that different administration times affect the lipid‐lowering effects of simvastatin.  相似文献   
8.
Growth factors in vertebrates display daily rhythms, which, while widely described in mammals, are still poorly understood in teleost fish. Here, we investigated the existence of daily rhythms in the somatotropic axis of the flatfish Solea senegalensis. In a first experiment, daily rhythms of the expression of pituitary adenylate cyclase–activating polypeptide (pacap), growth hormone (gh), insulin-like growth factor 1 (igf1) and its receptor (igf1r) were analyzed under a 12:12 h light:dark cycle. All genes displayed daily rhythms with the acrophases of pacap, gh and igf1 located in the second half of the dark phase (ZT 20:28–0:04 h), whereas the acrophase of igf1r was located around mid-light (ZT 5:33 h). In a second experiment, the influence of the time of day (mid-light, ML, versus mid-darkness, MD) of GH administration on the expression of these factors and on plasma glucose levels was tested. The response observed depended on the time of injection: the strongest effects were observed at MD, when GH administration significantly reduced pituitary gh and enhanced liver igf1 expression. These results provide the first evidence of daily rhythms and differential day/night effects in growth factors in S. senegalensis, suggesting new insights for investigating the physiology of growth and possible applications to improve fish aquaculture.  相似文献   
9.
ABSTRACT

The main purpose of this commentary is to update, based on our extensive review of the published literature of the past 45 yrs, the differential therapeutic effects of hypertension medications of various classes and their combinations when ingested in the evening/at-bedtime versus in the morning/upon-awakening. Interestingly, revision of the currently available evidence on the differential circadian-time-dependent effects of hypertension medications of six different classes and their combinations indicates among the 137 published hypertension medication trials that evaluated blood pressure (BP)-lowering efficacy according to treatment-time, 112 (81.75%) documented significant better benefits by evening/bedtime compared to morning/awakening-scheduled therapy. The remaining 25 published trials found no treatment-time difference in effects; indeed, no single study has reported better benefits of the still conventional, but scientifically unjustified, morning than evening/at-bedtime treatment scheme.  相似文献   
10.
Although the circadian pattern of cyclosporine (CSA) pharmacokinetics and toxicity has been described previously in both animal and clinical studies, the mechanism of this action is unknown. The present study compared the pharmacokinetics and experimental nephrotoxicity of chronic CSA in both the genetically-hyperlipidemic rat model and the lean litter-mate. Once daily dosing (25 mg/kg via gavage) was either at the start of the active (1900) or inactive (0700) cycle (Nov 1987 to Jan 1988). Serial serum samples following the final dose were assayed by both polyclonal (nonspecific) and monoclonal (specific for parent CSA) RIA. Renal toxicity was assessed by 24-hr creatinine clearances, fractional clearances of sodium and potassium, and inulin clearances (CIN). Despite a greater than 2-fold increase in serum CSA concentrations, there were no changes in renal function in obese rats dosed at the start of the active period compared to the inactive period. Furthermore, mean CIN of the lean group administered drug at the start of the active period was not significantly different from time-matched placebo-treated lean rats. However, there was an 80% drop in CIN in rats treated with CSA at the start of the inactive period compared to control group. There were no differences in electrolyte handling. Insulin concentrations, independent of time of dosing, were markedly elevated in obese rats dosed CSA compared to placebo-treated obese or both lean groups. Serum triglyceride levels were significantly correlated with pharmacokinetic parameters of total but not parent CSA. In summary, significant differences in toxicity were observed due to time of dosing and lipid profiles. Although the mechanism of this action remains unclear, it appears that increased non-fasting serum triglyceride levels following the active period most likely reduced CSA distribution into kidney tissue preventing the dose-limiting nephrotoxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号