首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1576篇
  免费   91篇
  国内免费   179篇
  2024年   2篇
  2023年   25篇
  2022年   9篇
  2021年   21篇
  2020年   31篇
  2019年   40篇
  2018年   29篇
  2017年   33篇
  2016年   36篇
  2015年   27篇
  2014年   38篇
  2013年   98篇
  2012年   38篇
  2011年   49篇
  2010年   27篇
  2009年   41篇
  2008年   49篇
  2007年   59篇
  2006年   71篇
  2005年   69篇
  2004年   46篇
  2003年   49篇
  2002年   69篇
  2001年   49篇
  2000年   55篇
  1999年   36篇
  1998年   32篇
  1997年   45篇
  1996年   41篇
  1995年   43篇
  1994年   59篇
  1993年   43篇
  1992年   43篇
  1991年   38篇
  1990年   44篇
  1989年   42篇
  1988年   33篇
  1987年   20篇
  1986年   38篇
  1985年   43篇
  1984年   30篇
  1983年   18篇
  1982年   38篇
  1981年   27篇
  1980年   24篇
  1979年   16篇
  1978年   14篇
  1977年   12篇
  1976年   6篇
  1975年   1篇
排序方式: 共有1846条查询结果,搜索用时 31 毫秒
1.
Due to the intensive mixing polymictic lakes should be homogenous. However, morphometric diversity and high water dynamics contribute to the differentiation of many parameters in various areas of the lakes. This study analyzes both phytoplankton and zooplankton to assess differences in water quality along the north–south axis of the longest lake in Poland. New phytoplankton indicators were applied for determining the lake's ecological status: the Q index based on functional groups and the PMPL (Phytoplankton Metric for Polish Lakes) index based on phytoplankton biomass. TSIROT index (Rotifer Trophic State Index), which comprises the percentage of species indicating a high trophic state in the indicatory group and the percentage of bacteriovorus in the Rotifera population, was used for zooplankton analysis.TP content was different at different sites – we observed its gradual increase from the south to the north. Spatial variation of phosphorus did not considerably affect plankton diversity. The phytoplankton was dominated by Oscillatoriales, typical of shallow, well-mixed eutrophic lakes. The ecological status of the lake based on the EQR (Ecological Quality Ratio) was poor or moderate. The zooplankton was dominated by rotifers (at almost all sites), which indicates a eutrophic state of the lake. The values of phytoplankton indices at the studied sites did not differ considerably; the differences resulted more from local conditions such as the contaminant inflow and the macrophyte development than water dynamics.We have demonstrated that in the lake dominated by filamentous Cyanobacteria the ecological status should be determined according to the PMPL index or other indices dependent on the dominant Cyanobacteria species. Since the Q index does not include the functional group S1, the results can lead to the false conclusion that water quality improves with an increased amount of phytoplankton. The high abundance of Cyanobacteria in the lake may have contributed to the poor growth of rotifers.  相似文献   
2.
The copepod Pseudoboeckella poppei (Daday) (Calanoida, Centropagidae) was sampled from Sombre and Heywood Lakes on Signy Island, Antarctica (60° S, 45° W) between January 1984 and March 1985. Sombre Lake is clear and oligotrophic with little phytoplankton and a bottom sediment low in organic content. By contrast Heywood Lake is turbid and mesotrophic; a substantial phytoplankton develops in summer and the bottom sediments are comparatively rich in organics. Both lakes freeze over for much of the year, forcing the copepods to adopt a benthic feeding strategy over winter. Adult Pseudoboeckella feed on phytoplankton when this is available, but also on detritus, diatoms and short algal filaments stirred up from the sediment. In Heywood Lake, male copepods show a smooth seasonal trend in lipid content with lipid being synthesised in early summer and utilised in late summer and winter. The summer increase in lipid content is associated with an increase in dry weight. Female lipid contents show evidence of two peaks of egg production. In Sombre Lake both male and female copepods increase in size during summer and show a wider range of lipid contents than in Heywood Lake; it is likely that this is due to the poorer winter feeding conditions which necessitate the synthesis of a much larger store of reserves during the summer. In contrast to marine calanoid copepods, lipid stores are exclusively triacylglycerol with no trace of wax ester.  相似文献   
3.
Max M. Tilzer 《Hydrobiologia》1989,173(2):135-140
An array of factors simultaneously controls phytoplankton photosynthesis and hence the primary production process. Because their relative importance shifts both with depth and with season, the significance of individual factors cannot be resolved by in situ incubations, even if all relevant environmental and biotic variables are measured.Here a procedure is described by which in addition to in situ measurements, photosynthesis is simultaneously assessed in identical subsamples under constant temperature (10 °C) and light (0.66 mol m–2 h–1 PAR conditions, in vitro). By calculating photosynthesis per unit of chlorophyll, effects of shifting biomass on photosynthesis can be eliminated but seasonal variations of light-saturated photosynthesis generated by temperature, and vertical changes of light-requirements (e.g. by light-shade adaptation) remain obscure. Quotients of in situ photosynthetic rates divided by in vitro rates allow the quantification of light-mediated changes. Provided that photosynthesis measured in vitro is light-saturated, quotients in situ: in vitro rates should never exceed unity. They are a measure for the degree of light-limitation. In vitro rates normalized to chlorophyll give information on temporal changes caused by variations in photosynthetic capacity. In Lake Constance, mean cell size appears to control light-saturated assimilation numbers.  相似文献   
4.
M. D. Burch 《Hydrobiologia》1988,165(1):59-75
The annual cycle of phytoplankton in saline, meromictic Ace Lake (68°2S.4S, 78°11.1E) in the Vestfold Hills, Antarctica, was studied from January, 1979 to January 1980. Ace Lake has permanent gradients of temperature, salinity, dissolved oxygen, and hydrogen sulphide, and is ice covered with up to 2 m of ice for 10–12 months each year. The phytoplankton community had low diversity, consisting of only four species, all flagellates — a prasinophyte Pyramimonas gelidicola McFadden et al., a cryptophyte of the genus Cryptomonas; an unidentified colourless microflagellate, and an unarmoured dinoflagellate. These were restricted to the oxic zone of the lake from the surface to 10 m.The phytoplankton had a cycle of seven months of active growth over spring and summer. Low numbers of cells survived in the water column over winter. Spring growth was initiated below the ice by increased light penetration through the ice into the lake, enhanced at the time by the removal of surface snow which accumulated on the ice over winter. Peak phytoplankton biomass production was by the shade adapted P. gelidicola and occurred at the interface of the oxic and anoxic zones where substantial available nitrogen as ammonia is found.The three dominant phytoplankton species displayed distinct vertical stratification over the oxic zone. This stratification was not static and developed over spring as the flagellates migrated to preferred light climate zones. Mean cell volume of two of the flagellates varied significantly over the year. Minimum volumes were recorded in winter and volume increased progressively over spring to reach maximum mean cell volume in summer. Mean cell volume was positively correlated with light intensity (maximum ambient PAR at the respective depth for date of sample). Low cell volume in winter may be related to winter utilization of carbohydrate reserves by slow respiration, and may represent a survival mechanism.  相似文献   
5.
The relationship between specific environmental factors as independent variables and temporal changes in phytoplankton community structure in the Vaal River (a turbid system) during 1984 was investigated by employing different diversity indices. Temporal changes in community structure reflected temporal changes in certain environmental factors. Phytoplankton diversity, measured with Shannon-Wie H' and Hurlbert PIE indices, was related firstly to discharge and discharge derived variables (such as SO4, Si, N and P loading) and secondly to turbidity derived variables (such as euphotic zone depth). Discharge appears to be of prime importance in affecting diversity. Observations were made that shed new light on conditions contributing to the development of an August peak (dominated by Stephanodiscus hantzschii fo. tenuis and Micractinium pusillum) in phytoplankton concentration. Increased environmental stress may reduce the number of sensitive species, thus reducing interspecific competition between tolerant species which could then exploit the — for them — more favourable conditions resulting in an increase in their numbers to peak concentrations.  相似文献   
6.
Planktonic algae are not abundant in the brackish waters of San Francisco Bay-estuary (mean chlorophyll a 5 µg 1–1), despite the high level of nutrients usually present due to the input of treated sewage from 3 million people. Macroalgae (seaweeds) are sometimes locally abundant in the Bay. Phytoplankton are abundant (chlorophyll a > 50 µg 1–1) and seaweeds uncommon in the almost freshwater Delta and upper estuary despite lower nutrient levels. Direct competition between these algal groups could explain the observed distributions.Given the size of the algae, large containers were needed for the determination of possible resource competition. Experiments were carried out in flow-through mesocosms (analog tanks) of 3 m3 volume. The macroalgae Ulva lactuca or Gigartina exasperata and a diatom-dominated phytoplankton, all from San Francisco Bay, were grown separately and together and with and without treated sewage effluent or other artificial nutrient additions. When grown alone phytoplankton and macroalgae were greatly stimulated by wastewater addition to unmodified baywater. The phytoplankton grew much more slowly in the presence of natural densities of Ulva. Allelochemical effects were tested for but not demonstrated.Resource competition for inorganic nitrogen was determined to be the probable cause of the depression of phytoplankton by Ulva. At its rapid growth rates in the flow-through mesocosms (up to 14% day–1) this macroalga can reduce inorganic nitrogen to low levels. Ulva has a greater affinity (lower KS) for nitrogen than do some of the plankton of the Bay. Ulva may outcompete phytoplankton by reducing nitrogen to levels below those capable of supporting phytoplankton growth. Other macroalgae such as Gigartina and Enteromorpha need to be studied to determine if they also can depress phytoplankton growth by resource competition.  相似文献   
7.
The diel vertical distribution patterns of a migratory alga Cryptomonas marssonii in a small, steeply stratified humic lake were investigated during a summer season (10 diurnal experiments between May and September) using a close-interval Blakar-type sampler. The results indicate that the cells were phototactic; they were typically concentrated at the surface or subsurface during daylight, while in darkness the highest densities were recorded in deeper water, usually near the upper limit of anoxia. During a dense blue-green bloom in August the cells of C. marssonii were also concentrated by day into the same water layer, where oxygen was depleted. However, the cells seemed to avoid totally anoxic water. Because the vertical distribution pattern of C. marssonii had special diurnal and seasonal characteristics, care is needed when designing a sampling programme for a phytoplankton population dominated by this species.  相似文献   
8.
Data from four reservoirs representative of different trophic states and with different apparent optical properties were analyzed to determine the relationship of Secchi depth to algal biomass as measured by chlorophyll a. In the eutrophic reservoir Secchi depth was determined partially by the chlorophyll a content (r2 = 0.31) but only when chlorophyll a data from bloom conditions are included. In the two mesotrophic reservoirs, Secchi depth was entirely determined by non-algal turbidity. In the oligotrophic reservoir, Secchi depth was determined neither by chlorophyll a nor non-algal turbidity and was probably determined by dissolved color. When data from the four reservoirs were pooled (N = 205), 53% of the variation in Secchi depth was explained by: SD = 2.55–0.52 ln (Turbidity) + 0.005 (Chlorophyll a). It is apparent that attempts to estimate algal biomass for trophic state classification or other management practices from Secchi depth data are inappropriate even where moderate amounts of non-algal turbidity are present.  相似文献   
9.
Population densities and total phosphorus concentrations in samples from different lakes of south-eastern Norway were determined. In addition some transplant experiments with dilute phytoplankton populations were carried out. A laboratory batch culture method was used.The diatoms studied may be divided into three ecological groups based on their cell densities and total phosphorus concentrations in the samples. This classification was supported by the experimental results. Cyclotella spp., Asterionella formosa and Tabellaria fenestrata did not grow or had low growth rates above pH 9. Synedra cf. acus and Fragilaria crontonensis had often high growth rates within the pH 9–10 range, but were not able to grow at pH values above 10. High pH-values had no effect on the growth rate of Oscillatoria. Oscillatoria, Synedra and Stephanodiscus were severely growth-limited in filtered water from oligotrophic lakes. Maximum growth rates of all the populations studied were often obtained after addition of phosphate and chelated iron (FeEDTA) in combination to filtered water samples from oligotrophic/mesotrophic lakes.  相似文献   
10.
This paper reviews the results of experimental manipulations, carried out during the period 1977–1983, on the phytoplankton maintained in the limnetic enclosures at Blelham Tarn, English Lake District. Three categories of manipulations are considered.The effects of variation in the scale and frequency of phosphorus loading (range: 0.3 to 2.5 g P m–2 a–1) upon the mean phytoplankton biomass, its seasonal distribution and specific dominance are shown to conform to well-established patterns and relationships observed in natural lakes. Much of the seasonal variability in species dominance occurred independently of nutrient ratios, though carbon availability has been critical at times. Attempts to manipulate the rates of removal of phytoplankton by grazing have confirmed that they act selectively against certain smaller species only, that they alter the rate of successional change, rather than its direction, and that they have little lasting influence upon the total phytoplankton standing crop. Attempts to manipulate rates of sinking loss through artificial enlargement of the epilimnetic circulation also regulated the light-conditions experienced by suspended phytoplankton.Growth-rate relationships to an index of light exposure and to temperature fluctuation are also derived for several species and are related to morphological and physiological characters of the organisms concerned. These interpretations are briefly reviewed in relation to periodic cycles in natural lakes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号