首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  国内免费   2篇
  2022年   1篇
  2018年   1篇
  2013年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1995年   2篇
  1992年   2篇
  1989年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
Formaldehyde dehydrogenase from Pseudomonas putida C-83 was found to contain 7 halfcystine residues per subunit monomer, as checked by the method of performic acid oxidation. Approximately 7 sulfhydryl groups per subunit monomer were titrated with 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) after denaturation with 8 m urea. In the native enzyme, modification of three sulfhydryl groups per subunit with p-chloromercuribenzoate (PCMB) led to the complete loss of enzyme actiyities for both formaldehyde and n-butanol. Hydrogen-peroxide competitively inhibited the enzyme activity for formaldehyde, while it was only slightly inhibitory to the activity for n-butanol. Both formaldehyde and hydrogen-peroxide protected one sulfhydryl group per subunit monomer from modification with PCMB. Moreover, hydrogen-peroxide was hardly reactive to the enzyme which was preincubated with formaldehyde.

From these observations, we conclude that one of three PCMB-reactive sulfhydryl groups is essential for the binding of formaldehyde, and hydrogen-peroxide modifies this sulfhydryl group.  相似文献   
2.
By selected microorganisms dl-carvomenthyl acetate, dl-isocarvomenthyl acetate and dl-neo isocarvomenthyl acetate were asymmetrically hydrolyzed to l-carvomenthol with d-carvomenthyl acetate, l-isocarvomenthol with d-isocarvomenthyl acetate and d-neo isocarvomenthol with l-neo isocarvomenthyl acetate respectively; dl-neo carvomenthyl acetate was not hydrolyzed.  相似文献   
3.
This paper reports 2,4,6-trichlorophenol (246TCP) degradation bySphingopyxis chilensis S37 and Sphingopyxis chilensis-like strain S32,which were unable to use 246TCP as the sole carbon and energy source. In R2A broth, the strainsdegraded 246TCP up to 0.5 mM. Results with mixtures of different 246TCP and glucose concentrations in mineral salt media demonstrated dependence on glucose to allow bacterial growth and degradation of 246TCP. Strain S32 degraded halophenol up to 0.2 mM when 5.33 mM glucose was simultaneously added, while strain S37 degraded the compound up to 0.1 mM when 1.33 mM glucose was added. These 246TCP concentrations were lethal for inocula in absence of glucose. Stoichiometricreleases of chloride and analysis by HPLC, GC-ECD and GC-MS indicated 246TCP mineralisation by both strains. To our knowledge, this is the first report of bacteriaable to mineralize a chlorophenol as a non-growth and inhibitory substrate. The concept of secondary utilization instead of cometabolism is proposed for this activity.  相似文献   
4.
In order to assess the applicability of using microelectrodes as a tool for inhibition tests, temporal and spatial inhibitory effects of 2-chlorophenol (2-CP) on O(2) respiration and nitrification activities in municipal wastewater biofilms were investigated using microelectrodes for O(2) and NH(4)(+). The time-course microelectrode measurements demonstrated that 2-CP inhibited O(2) respiration and nitrification activities within 6-18 min. The microbial activities were inhibited only in the upper 400 microm of the biofilms by 2-CP, and the bacteria present in the deeper parts of the biofilms were still active, probably due to limited penetration of 2-CP. These results could reasonably explain the difference in inhibitory ratios of the O(2) respiration and nitrification activities in the biofilms. O(2) respiration activity was incompletely inhibited, which was attributed to the presence of O(2) respiration activities in the deeper parts of the biofilm. In contrast, nitrification activity was significantly inhibited because ammonia-oxidizing bacteria were present in the upper parts of the biofilm. These results indicate that the microelectrodes with a very quick response time and a high spatial resolution are useful tools to study temporal and spatial inhibitory effects of inhibitors on in situ microbial activities in biofilms.  相似文献   
5.
A fluidized bed bioreactor (FBBR) was operated for more than 1000 days under two regimes, Methanogenic (M) and Methanogenic-Aerobic (M-A), to remove 2,4,6-trichlorophenol (TCP) and phenol (Phe) from a synthetic wastewater, containing different amounts of TCP and Phe, using different aeration flow-rates (0, 2.13, and 1.06 NL O(2)/L.day). M conditions (80:20 mg/L of TCP:Phe, 0 NL O(2)/L.day) showed similar TCP and Phe removal (>95%). Nevertheless accumulation of 4-chlorophenol (4CP) up to 16 mg/L and Phe up to 4 mg/L was observed, while in M-A conditions (80:20 mg/L of TCP:Phe, 2.13 NL O(2)/L.day) TCP and Phe removal achieved 99.9(+)% and after 70 days no accumulation of intermediates were detected. The increase of TCP and Phe in the influent under M-A conditions from 80:20 to 120:30 mg/L of TCP:Phe did not negatively affect the removal of TCP, intermediates and Phe; in fact, they were similar to those in previous M-A conditions. The decrease in the oxygen flow rate from 2.13 to 1.06 NL O(2)/L.day had no negative effect on pollutant removals, which were as high as in previous two M-A conditions. The specific methanogenic activity of bioparticles of the fluidized bed decreased with long-term partial aeration, starting from 1.097 mmol CH(4)/h.g(TKN) in the M regime (day 60) to <0.02 mmolCH(4)/h.g(TKN) at day 1050, suggesting aerobic regime in the bioreactor rather than an M-A regime. In conclusion, complete removal of TCP and less chlorinated intermediates could be achieved in an initially methanogenic FBBR under conditions of partial aeration, although long-term operation seemed to negatively affect the methanogenic activity of biomass. It is also likely that after extended aeration the microbial community was finally enriched with strains with the ability to attack 2,4,6-TCP under aerobic conditions. This report represents the first evidence of a long exposure to oxygen of an anaerobic microbial consortium that efficiently remove TCP.  相似文献   
6.
白腐真菌生物技术降解氯酚污染物   总被引:4,自引:0,他引:4  
彭丹  曾光明  陈耀宁  喻曼  胡霜 《生态学杂志》2007,26(10):1657-1664
生物降解是降解氯酚污染物的一条重要的转化途径,白腐真菌是一种高效的生物降解菌种,应用白腐真菌生物技术降解具有毒性和抗降解性的氯酚具有重要意义。本文阐述了白腐菌降解氯酚类污染物的途径,阐述了白腐真菌技术,主要包括酶技术、固定化技术、真菌强化技术、堆肥化和生物反应器等在氯酚污染环境治理中的应用,并概述了近几年白腐菌降解氯酚的研究热点和白腐真菌生物技术的应用趋势。  相似文献   
7.
The biodegradation of 2,4,6-trichlorophenol and 2,4,5-trichlorophenol by the white rot fungus Phanerochaete chrysosporium was studied in batch and continuous reactor systems. Experiments were conducted in shake flasks as well as in packed-bed reactors in which the fungus was immobilized. The degradation rates in the packed-bed reactors were found to be two orders of magnitude greater than those obtained in the shake flasks in which the fungus was just suspended. The degradation rate was found to be influenced by the concentrations of the carbon and nitrogen sources, pH, and fluid shear stress. Optimal ranges of these parameters to maximize biodegradation were determined. A mathematical model was developed in which the degradation process was assumed to consist of two sequential reaction steps, the first catalyzed by an extracellular enzyme system and the second requiring the presence of the mycelium. The deactivation of the extracellular enzyme system was also accounted for in the model. The Michaelis-Menten and the enzyme deactivation parameters were determined independently. Good agreement between the experimental data and the results produced by the regression was found. (c) 1995 John Wiley & Sons, Inc.  相似文献   
8.
Degradation of chlorophenols by P. chrysosporium in static cultures has been studied. The influences of mycelium acclimation, co-substrate concentration and nitrogen source on phenol degradation were analyzed. With non-acclimated mycelium the maximal concentrations degraded were 150 ppm of o-chorophenol and 100 ppm of the isomers m- and p-chlorophenol. The substituted ortho-position on the aromatic ring was the preferred attack position. Meta- and para-positions were less reactive and resulted in a slower degradation rate than the ortho position. Nevertheless, with acclimated mycelium, an increase in the ability to degrade chlorophenol and a higher reactivity in meta- and para-positions were observed (degraded chlorophenol increased by up to 70% for the o-isomer and 50% for the m- and p-isomers with respect to non-acclimated mycelium). A decrease in glucose concentration caused a decrease in chlorophenol degradation rate. Twelve days were needed for complete degradation of o-chlorophenol with 10 g/l of glucose and 22 days when glucose concentration was decreased to 2.5 g/l. The reduction of ammonium tartrate caused a greater lag time, but not a decrease in chlorophenol degradation rate. Replacement of ammonium tartrate by ammonium chloride caused a decrease in chlorophenol degradation rate.  相似文献   
9.
Summary The response of a pollutant-degrading bacterium P. putida CP1 to stresses was investigated. The growth on the mono-chlorophenols resulted in a decrease in dry weight of the organism, although there was an increase in cell number. There was a change of bacterial shape from rod to round as well as the reduction of cell size when grown on phenol and chlorophenols. Changes in cell shape and size were also evident in glucose-free medium, which suggested that alteration of cell shape from rod to round as well as reduction of cell size were due to nutritional stress. The increase in cell number but a drop in dry weight correlated with the reduction of cell size and shape. The organism flocculated with chlorophenols but not with phenol. The cause of flocculation was due to the toxicity of chlorophenol. Isomerization of cis to trans forms of the unsaturated fatty acids in P. putida CP1 occurred under conditions of environmental stress. Trace amounts of the polyunsaturated fatty acid linoleic acid (cis-9, cis-12-octadecadienoic acid) rarely found in bacterial membranes and oleic acid (cis-9-octadecanoic acid), which is a typical product of aerobic fatty acid synthesis, were found in P. putida CP1.  相似文献   
10.
A pure culture of Rhodococcus erythropolis was isolated with the ability to degrade 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol. Degradation of 2-chlorophenol by the uninduced culture of Rhodococcus erythropolis began after a prolonged lag period and complete mineralization of the substrates took 45 days. With the aim of reducing the lag period and subsequently improving the rate of degradation, the cells of the isolate were induced with benzoate, phenol, toluene and catechol individually. Benzoate-induced cells showed the highest rate of degradation and were thus used for the study of the degradation kinetics of 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol. Complete mineralization of these substrates was achieved up to a concentration of 300, 100 and 50 mg l–1 respectively. Degradation of the chlorophenols was initiated without any significant lag and took the remarkably short time periods of 84, 64 and 144 h for the highest concentrations of the substrate. Evaluation of kinetic parameters showed chlorophenol degradation to follow substrate inhibition kinetics. This is evident from the decrease in specific growth rate, growth yield and substrate uptake rate with increase in the initial substrate concentrations. Toxicity of the chlorophenols was observed to depend on the position of chlorine on the benzene ring and the degree of chlorination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号