首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   825篇
  免费   50篇
  国内免费   48篇
  2024年   3篇
  2023年   11篇
  2022年   9篇
  2021年   15篇
  2020年   18篇
  2019年   17篇
  2018年   21篇
  2017年   25篇
  2016年   32篇
  2015年   22篇
  2014年   14篇
  2013年   100篇
  2012年   24篇
  2011年   43篇
  2010年   22篇
  2009年   40篇
  2008年   31篇
  2007年   38篇
  2006年   41篇
  2005年   30篇
  2004年   35篇
  2003年   32篇
  2002年   38篇
  2001年   20篇
  2000年   25篇
  1999年   26篇
  1998年   20篇
  1997年   19篇
  1996年   15篇
  1995年   14篇
  1994年   13篇
  1993年   9篇
  1992年   9篇
  1991年   17篇
  1990年   7篇
  1989年   6篇
  1988年   5篇
  1987年   9篇
  1986年   6篇
  1985年   9篇
  1984年   4篇
  1983年   7篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有923条查询结果,搜索用时 421 毫秒
1.
Phytochemical analysis of dried twigs of Marsdenia roylei (family Asclepiadaceae) has resulted in the isolation of a trisaccharide, maryal, and a diglycoside, rolinose. Their structures were determined as O-beta-D-oleandropyranosyl-(1-->4)-O-beta-D-digitoxopyranosyl++ +-(1-->4)-D- cymaral and ethyl O-beta-D-oleandropyranosyl-(1-->4)-O-3-O-methyl-6-deoxy-beta-D- allopyranoside, respectively, by chemical degradation and spectroscopic methods.  相似文献   
2.
Estimation of chitin deposition in the pupal and adult cuticles of adult Drosophila melanogaster during the pupal period is described. The timing of the periods of chitin deposition is compared with that deduced by previous workers using electron microscopy. The hypothesis that lethalcryptocephal mutant homozygotes are unable to evert their cephalic complexes at pupation because of excess chitin deposition is examined. The data obtained show no evidence that the mutation has any effect on chitin deposition.  相似文献   
3.
4.
The free and N-acetyl glucosamine contents, serving as a measure of the amounts of chitosan and chitin respectively, were determined in the chitinase hydrolysates of the cell wall of a wild strain ofNeurospora crassa. Chitinase, obtained from cultures ofSerratia marcescens, could hydrolyse the cell wall completely apart from being capable of hydrolysing preparations of chitin and chitosan. The free and N-acetyl glucosamines, released by chitinase hydrolysis, were determined by a modified Morgan-Elson reaction carried out in the presence and absence of acetic anhydride. The method is capable of estimating chitin and chitosan contents in as little as 100 μg of cell wall material.  相似文献   
5.
An acid protease was purified from the mycelial form of Mucor rouxii by a method which involved salt and acid precipitation, gel filtration and anion-exchange chromatography. The enzyme had a molecular mass of 16,000 Da. Its optimum pH was 4.0, maximal activity was obtained at 50°C, and it was inactivated at 70°C. It was not affected by leupeptin or N -p-tosyl-L-lysine chloromethyl ketone (TLCK) but diazoacetyl-DL-norleucine methyl ester (DNME) in the presence of Cu2+ and more noticeably pepstatin A, strongly inhibited the activity. This acid protease did not activate zymogenic chitin synthetase from the fungus, but brought about its inactivation even at low concentrations and after short periods of incubation time.Abbreviations TLCK N -p-tosyl-L-lysine chloromethyl ketone - DNME diazoacetyl-DL-norleucine methyl ester - TCA trichloroacetic acid - SDS sodium dodecyl sulfate  相似文献   
6.
Fowl plague virus, strain Dutch, was metabolically labeled withd-[2-3H]mannose, or withd-[6-3H]glucosamine, and the small subunit (HA2; 0.8 mg in total) of the viral hemagglutinin was isolated by preparative sodium dodecylsulfate-polyacrylamide gel electrophoresis. After proteolytic digestion, the radioactive oligosaccharides were sequentially liberated from the glycopeptides by treatment with different endo--N-acetylglucosaminidases and with peptide:N-glycosidase or, finally, by hydrazinolysis. In this manner, four groups of glycans could be obtained by consecutive gel filtrations and were subfractionated by HPLC. The structures of the individual oligosaccharides were analyzed by micromethylation, by acetolysis or by digestion with exoglycosidases. The major species amongst the high mannose glycans at Ans-406 of the viral glycopolypeptide were found to be Man1-2Man1-3(Man1-2Man1-6)Man1-6(Man1-2Man1-2Man1-3)Man1-4GlcNac1-4GlcNAc and Man1-3(Man1-2Man1-6)Man1-6(Man1-2Man1-2Man1-3)Man1-4GlcNAc1-4GlcNAc, while the complex glycans at Asn-478 are predominantly GlcNAc1-2Man1-3(GlcNAc1-2Man1-6)Man1-4GlcNAc1-4GlcNAc (lacking, in part, one of the outerN-acetylglucosamine residues) and GlcNAc1-2Man1-3(Gal1-4GlcNAc1-2Man1-6)Man1-4GlcNAc1-4GlcNAc.Abbreviation BSA bovine serum albumin - endo D (F,H) endo--N-acetyl-d-glucosaminidase D (F,H) - HA hemagglutinin (HA1, large subunit of HA - HA2 small subunit - FPV fowl plague virus - PNGase F peptide:N-glycosidase F - SDS sodium dodecylsulfate  相似文献   
7.
Fructan biosynthesis in excised leaves of Lolium temulentum L.   总被引:10,自引:10,他引:0  
  相似文献   
8.
Human respiratory mucin glycoproteins from patients with cystic fibrosis were purified and oligosaccharide chains were released by treatment with alkaline borohydride. A neutral oligosaccharide alditol fraction was isolated from mucin obtained from a patient with A blood group determinant by chromatography on DEAF-cellulose and individual oligosaccharide chains were then isolated by gel filtration on BioGel P-6 columns and high performance liquid chromatography with gradient and isocratic solvent systems. The structures of the purified oligosaccharides were determined by methylation analysis, sequential glycosidase digestion and H-NMR spectroscopy. The amount of each chain was determined by compositional analysis. A wide array of discrete branched oligosaccharide structures that contain from 3 to 22 sugar residues were found. Many of the oligosaccharides are related and appear to be precursors of larger chains. The predominant branched oligosaccharides which accumulate contain terminal blood group H (Fuc2Ga14) or blood group A (Fuc2(Ga1NAc3) (Ga14) determinants which stop further branching and chain elongation. The elongation of oligosaccharide chains in respiratory mucins occurs on the 3-linked G1cNAc at branch points, whereas the 6-linked GlcNAc residue ultimately forms short side chains with a Fuc2 (Ga1NAc3) Gal4 G1cNAc6 structure in individuals with A blood group determinant.The results obtained in the current studies further suggest that even higher molecular weight oligosaccharide chains with analogous branched structures are present in some human respiratory mucin glycoproteins. Increasing numbers of the repeating sequence shown in the oligosaccharide below is present in the higher molecular weight chains. {ie75-1} This data in conjunction with our earlier observations on the extensive branching of these oligosaccharide chains helps to define and explain the enormous range of oligosaccharide structures found in human and swine respiratory mucin glycoproteins. Comparison of the relative concentrations of each oligosaccharide chain suggest that these oligosaccharides represent variations of a common branched core structure which may be terminated by the addition of a2-linked fucose to the 3/4 linked galactose residue at each branch point. These chains accumulate and are found in the highest concentrations in these respiratory mucins.  相似文献   
9.
Chitin synthesis in third-instar Lucilia cuprina larvae cultured at 23 °C was investigated using in vivo and in vitro systems, the latter with whole and with homogenized integuments. Synthesis was at a maximum between 24 and 48h after ecdysis from the second instar. Chitin was deposited in layers, and labeled GlcNAc was rapidly cleared from the hemolymph. In in vitro homogenate systems, the rapid conversion of UDP-([14C]GlcN)Ac to ([14C]GlcN)Ac and its 1-phosphate derivative contributed to the low incorporation of this precursor into chitin. The extent of the conversion was reduced by the addition of KCN or phenylthiourea. In in vivo and in vitro tissue systems the level of incorporation of ([14C]ClcN)Ac was higher than that of UDP-([14C]GlcN)Ac. However, in in vitro homogenate systems there was no difference unless UTP was added when the level of incorporation of only ([14C]GlcN)Ac was increased (by a factor of 9). Incorporation of UDP-([14C]GlcN)Ac, but not that of ([14C]GlcN)Ac, was decreased when larvae were deprived of food. Soluble oligosaccharides were detected in in vitro homogenate systems. They were formed during chitin synthesis and may represent newly initiated chitin chains. A reappraisal of current ideas on chitin synthesis in insects is needed.  相似文献   
10.
K. Schmitz  U. Holthaus 《Planta》1986,169(4):529-535
Biosynthesis of sucrosyl-oligosaccharides (raffinose, stachyose) was traced in source leaves of Cucumis melo after 14C-photoassimilation. The main carbon compound exported was 14C-labeled stachyose. No oligosaccharide synthesis was detected in young, importing leaves. Mesophyll protoplasts, isolated from mature leaves which had previously photosynthesized 14CO2, did not contain 14C-oligosaccharides but contained [14C]-sucrose and 14C-hexoses. Isolated minor-vein-enriched fractions from the same leaves, however, showed nearly 30% of the 14C of the neutral fraction to be in oligosaccharides. Isolated, viable mesophyll protoplasts incubated with NaH14CO3 also failed to incorporate radioactivity into oligosaccharides, although sucrose and galactinol synthesis was unimpaired. Galactinolsynthase activity in leaf extracts and in mesophyll protoplasts was 16.8 mol·h-1·mg-1 protein and 13.8 mol·h-1·mg-1 protein, respectively. Galactosyltransferase (EC 2.4.1.67), which synthesizes stachyose from raffinose and galactinol, had an activity of 50 nmol·h-1·mg-1 protein in leaf extracts and was also present in the minor-vein-enriched fraction, but could not be detected in mesophyll protoplast lysates. The results indicate that mesophyll cells may not be the site of stachyose synthesis although precursor compounds like sucrose and galactinol are synthesized there.Abbreviation HPLC high-performance liquid chromatography  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号