首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2019年   1篇
  2003年   1篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Abstract Proton translocation associated with electron flow to oxygen has been observed with cells of Nitrobacter winogradskyi in the presence of either potassium ferrocyanide or isoascorbate plus N , N , N ', N ' tetramethyl- p -phenylenediamine. The data are consistent with a proton pumping function for the terminal oxidase, cytochrome aa 3, in this organism as the mechanism for generating a protonmotive force. The failure of previous work with Nitrobacter [4] to detect proton translocation linked to oxidation of nitrite, the physiological substrate, is discussed.  相似文献   
2.
Summary The lepidopteran midgut is a model for the oxygendependent, electrogenic K+ transport found in both alimentary and sensory tissues of many economically important insects. Structural and biochemical evidence places the K+ pump on the portasome-studded apical plasma membrane which borders the extracellular goblet cavity. However, electrochemical evidence implies that the goblet cell K+ concentration is less than 50mm. We used electron probe X-ray microanalysis of frozenhydrated cryosections to measure the concentration of Na, Mg, P, S, Cl, K, Ca and H2O in several subcellular sites in the larval midgut ofManduca sexta under several experimental regimes. Na is undetectable at any site. K is at least 100mm in the cytoplasm of all cells. Typicalin vivo values (mm) for K were: blood, 25; goblet and columnar cytoplasm, 120; goblet cavity, 190; and gut lumen, 180. The high K concentration in the apically located goblet cavity declined by 100mm under anoxia. Both cavity and gut fluid are Cl deficient, but fixed negative charges may be present in the cavity. We conclude that the K+ pump is sited on the goblet cell apical membrane and that K+ follows a nonmixing pathway via only part of the goblet cell cytoplasm. The cavity appears to be electrically isolated in alimentary tissues, as it is in sensory sensilla, thereby allowing a PD exceeding 180 mV (lumen positive) to develop across the apical plasma membrane. This PD appears to couple K+ pump energy to nutrient absorption and pH regulation.  相似文献   
3.
A major theme in my career has been photophosphorylation; especially contributions to the early work on chemiosmosis, and later involvement in CF1 activation and function. A second theme has been interest in chloroplast biogenesis, with work ranging from translation in chloroplasts to discovery of the enzyme which may contribute to strand exchange, homologous recombination and DNA repair in chloroplasts. Throughout, I try to point out the major contributions of graduate students and postdocs, and help from friends and colleagues. Without them I would have had no career at all.  相似文献   
4.
In bacteria two forms of metabolic energy are usually present, i.e. ATP and transmembrane ion-gradients, that can be used to drive the various endergonic reactions associated with cellular growth. ATP can be formed directly in substrate level phosphorylation reactions whereas primary transport processes can generate the ion-gradients across the cytoplasmic membrane. The two forms of metabolic energy can be interconverted by the action of ion-translocating ATPases. For fermentative organisms it has long been thought that ion-gradients could only be generated at the expense of ATP hydrolysis by the F0F1-ATPase. In the present article, an overview is given of the various secondary transport processes that form ion-gradients at the expense of precursor (substrate) and/or end-product concentration gradients. The metabolic energy formed by these chemiosmotic circuits contributes to the energy status of the bacterial cell which is particularly important for anaerobic/fermentative organisms.  相似文献   
5.
Summary A simple carrier model describes adequately the transport of protons across lipid bilayer membranes by the weak acid S-13. We determined the adsorption coefficients of the anionic, A, and neutral, HA, forms of the weak acid and the rate constants for the movement of A and HA across the membrane by equilibrium dialysis, electrophoretic mobility, membrane potential, membrane conductance, and spectrophotometric measurements. These measurements agree with the results of voltage clamp and charge pulse kinetic experiments. We considered three mechanisms by which protons can cross the membranesolution interface. An anion adsorbed to the interface can be protonated by (i) a H+ ion in the aqueous phase (protolysis), (ii) a buffer molecule in the aqueous phase or (iii) water molecules (hydrolysis). We demonstrated that the first reaction cannot provide the required flux of protons: the rate at which H+ must combine with the adsorbed anions is greater than the rate at which diffusion-limited reactions occur in the bulk aqueous phase. We also ruled out the possibility that the buffer is the main source of protons: the rate at which buffers must combine with the adsorbed anions is greater than the diffusion-limited rate when we reduced the concentration of polyanionic buffer adjacent to the membrane-solution interface by using membranes with a negative surface charge. A simple analysis demonstrates that a hydrolysis reaction can account for the kinetic data. Experiments at acid pH demonstrate that the transfer of H+ from the membrane to the aqueous phase is limited by the rate at which OH combines with adsorbed HA and that the diffusion coefficient of OH in the water adjacent to the bilayer has a value characteristic of bulk water. Our experimental results demonstrate that protons are capable of moving rapidly across the membrane-solution interface, which argues against some mechanisms of local chemiosmosis.  相似文献   
6.
Stomata are light‐activated biological valves in the otherwise gas‐impermeable epidermis of aerial organs of higher plants. Stomata often regulate rates of photosynthesis and transpiration in ways that optimize whole‐plant carbon gain against water loss. Each stoma is flanked by a pair of opposing guard cells. Stomatal opening occurs by light‐activated increases in the turgor pressure of guard cells, which causes them to change shape so that the stomatal pore between them widens. These increases in turgor pressure oppose increases in cellular osmotic pressure that result from uptake of K+. K+ uptake occurs by a chemiosmotic mechanism in response to light‐activated extrusion of H+ outward across the plasma membrane of the guard cell. The initial changes in cellular membrane potential lead to the opening of inward‐rectifying K+ channels, after which K+ is taken up along its electrochemical gradient. Changes in membrane potential resulting from K+ uptake may be balanced by accumulation of Cl?ions by guard cells and/or by synthesis of malic acid within each cell. Malic acid also acts to buffer increases in cytosolic pH caused by H+ extrusion. This review describes how the application of patch‐clamp technology to guard cell protoplasts has enabled investigators to elucidate the mechanisms by which H+ is extruded from guard cells, the types of ion channels present in the guard cell plasma membrane, how those ion channels are regulated, and the signal transduction processes that trigger stomatal opening and closing.  相似文献   
7.
8.
Henrik Lundegårdh made major contributions in the field of ecology and plant physiology from 1912 to 1969. His early work at Hallands Väderö in the Kattegat pioneered quantitative approaches to plant ecology and laid the understanding of carbon dioxide exchange in natural communities which is still useful today in global carbon accounting. Very early on in this work he invented the flame photometer. In trying to understand salt respiration of plants, he started to formulate hypotheses for the relationship between respiration and ion movement, including protons, hypotheses that were forerunners to the Chemiosmotic Hypothesis of Peter Mitchell. Necessarily, this involved work on plant cytochromes. He invented several early recording spectrophotometers and made many early discoveries in the field of plant cytochromes, including the photo-oxidation of cytochrome f in photosynthesis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号