首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   988篇
  免费   72篇
  国内免费   43篇
  2023年   19篇
  2022年   35篇
  2021年   41篇
  2020年   40篇
  2019年   30篇
  2018年   48篇
  2017年   27篇
  2016年   35篇
  2015年   44篇
  2014年   44篇
  2013年   76篇
  2012年   41篇
  2011年   54篇
  2010年   40篇
  2009年   53篇
  2008年   64篇
  2007年   51篇
  2006年   53篇
  2005年   52篇
  2004年   68篇
  2003年   34篇
  2002年   39篇
  2001年   21篇
  2000年   16篇
  1999年   18篇
  1998年   15篇
  1997年   9篇
  1996年   14篇
  1995年   10篇
  1994年   1篇
  1993年   6篇
  1992年   2篇
  1990年   2篇
  1988年   1篇
排序方式: 共有1103条查询结果,搜索用时 15 毫秒
1.
Apg2, one of the three cytosolic Hsp110 chaperones in humans, supports reactivation of unordered and ordered protein aggregates by Hsc70 (HspA8). Together with DnaJB1, Apg2 serves to nucleate Hsc70 molecules into sites where productive entropic pulling forces can be developed. During aggregate reactivation, Apg2 performs as a specialized nucleotide exchange factor, but the origin of its specialization is poorly defined. Here we report on the role of the distinctive C-terminal extension present in Apg2 and other metazoan homologs. We found that the first part of this Apg2 subdomain, with propensity to adopt α-helical structure, interacts with the nucleotide binding domain of Hsc70 in a nucleotide-dependent manner, contributing significantly to the stability of the Hsc70:Apg2 complex. Moreover, the second intrinsically disordered segment of Apg2 C-terminal extension plays an important role as a downregulator of nucleotide exchange. An NMR analysis showed that the interaction with Hsc70 nucleotide binding domain modifies the chemical environment of residues located in important functional sites such as the interface between lobe I and II and the nucleotide binding site. Our data indicate that Apg2 C-terminal extension is a fine-tuner of human Hsc70 activity that optimizes the substrate remodeling ability of the chaperone system.  相似文献   
2.
Cataract is the major reason for human blindness worldwide. α-Crystallin, as a key chaperone of eye lenses, keeps the lenticular tissues in its transparent state over time. In this study, cataract-causing familial mutations, P20R and A171T, were introduced in CRYАB gene. After successful expression in Escherichia coli and subsequent purification, the recombinant proteins were subjected to extensive structural and functional analyses using various spectroscopic techniques, gel electrophoresis, and electron microscopy. The results of fluorescence and Raman assessments suggest important but discreet conformational changes in human αB-Cry upon these cataractogenic mutations. Furthermore, the mutant proteins exhibited significant secondary structural alteration as revealed by FTIR and Raman spectroscopy. An increase in conformational stability was seen in the human αB-Cry bearing these congenital cataractogenic mutations. The oligomeric size distribution and chaperone-like activity of human αB-Cry were significantly altered by these mutations. The P20R mutant protein was observed to loose most of the chaperone-like activity. Finally, these cataractogenic mutant proteins exhibited an increased propensity to form the amyloid fibrils when incubated under environmental stress. Overall, the structural and functional changes in mutated human αB-Cry proteins can shed light on the pathogenic development of congenital cataracts.  相似文献   
3.
AtJ1, a mitochondrial homologue of theEscherichia coli DnaJ protein   总被引:1,自引:0,他引:1  
The nucleotide sequence of a cDNA clone fromArabidopsis thaliana ecotype Columbia was determined, and the corresponding amino sequence deduced. The open reading frame encodes a protein, AtJ1, of 368 residues with a molecular mass of 41 471 Da and an isoelectric point of 9.2. The predicted sequence contains regions homologous to the J- and cysteine-rich domains ofEscherichia coli DnaJ, but the glycine/phenylalanine-rich region is not present. Based upon Southern analysis,Arabidopsis appears to have a singleatJ1 structural gene. A single species of mRNA, of 1.5 kb, was detected whenArabidopsis poly(A)+ RNA was hybridized with theatJ1 cDNA. The function ofatJ1 was tested by complementation of adnaJ deletion mutant ofE. coli, allowing growth in minimal medium at 44°C. The AtJ1 protein was expressed inE. coli as a fusion with the maltose binding protein. This fusion protein was purified by amylose affinity chromatography, then cleaved by digestion with the activated factor X protease. The recombinant AtJ1 protein was purified to electrophoretic homogeneity.In vitro, recombinant AtJ1 stimulated the ATPase activity of bothE. coli DnaK and maize endosperm cytoplasmic Stress70. The deduced amino acid sequence of AtJ1 contains a potential mitochondrial targeting sequence at the N-terminus. Radioactive recombinant AtJ1 was synthesized inE. coli and purified. When the labeled protein was incubated with intact pea cotyledon mitochondria, it was imported and proteolytically processed in a reaction that depended upon an energized mitochondrial membrane.Abbreviations MBP maltose binding protein - PCR polymerase chain reaction - Stress70c the cytosolic member of the 70 kDA family of stress-related proteins  相似文献   
4.
The Drosophila melanogaster tumor suppressor gene lethal(2)tumorous imaginal discs (l(2)tid) causes in homozygotes malignant growth of cells of the imaginal discs and the death of the mutant larvae at the time of puparium formation. We describe the molecular cloning of the 1(2)tid+ gene and its temporal expression pattern in the wild-type and mutant alleles. Germ line rescue of the tumor phenotype was achieved with a 7.0 kb Hindlll-fragment derived from the polytene chromosome band 59F5. The l(2)tid+ gene spans approximately 2.5 kb of genomic DNA. The protein coding region, 1,696 bps long, is divided by an intron into two exons. The predicted Tid56 protein contains 518 amino acids and possesses a theoretical molecular weight of 56 kDa. It shows significant homology to all known DnaJ related proteins from bacteria, yeast, and man. The possible function of the Tid56 protein in tumor suppression is delineated. © 1995 Wiley-Liss, Inc.  相似文献   
5.
BackgroundA copper chaperone CCS is a multi-domain protein that supplies a copper ion to Cu/Zn-superoxide dismutase (SOD1). Among the domains of CCS, the N-terminal domain (CCSdI) belongs to a heavy metal-associated (HMA) domain, in which a Cys-x-x-Cys (CxxC) motif binds a heavy metal ion. It has hence been expected that the HMA domain in CCS has a role in the metal trafficking; however, the CxxC motif in the domain is dispensable for supplying a copper ion to SOD1, leaving an open question on roles of CCSdI in CCS.MethodsTo evaluate protein-protein interactions of CCS through CCSdI, yeast two-hybrid assay, a pull-down assay using recombinant proteins, and the analysis with fluorescence resonance energy transfer were performed.ResultsWe found that CCS specifically interacted with another copper chaperone HAH1, a HMA domain protein, through CCSdI. The interaction between CCSdI and HAH1 was not involved in the copper supply from CCS to SOD1 but was mediated by a zinc ion ligated with Cys residues of the CxxC motifs in CCSdI and HAH1.ConclusionWhile physiological significance of the interaction between copper chaperones awaits further investigation, we propose that CCSdI would have a role in the metal-mediated interaction with other proteins including heterologous copper chaperones.  相似文献   
6.
7.
8.
9.
Molecular chaperones are crucial for the correct folding of newly synthesized polypeptides, in particular, under stress conditions. Various studies have revealed the involvement of molecular chaperones, such as heat shock proteins, in diapause maintenance and starvation; however, the role of other chaperones in diapause and starvation relatively is unknown. In the current study, we identified two lectin‐type chaperones with calcium affinity, a calreticulin (LdCrT) and a calnexin (LdCnX), that were present in the fat body of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) during diapause. Both proteins possessed an N‐globular domain, a P‐arm domain, and a highly charged C‐terminal domain, while an additional transmembrane domain was present in LdCnX. Phylogenetic analysis revealed distinction at the order level. Both genes were expressed in multiple tissues in larval and adult stages, and constitutively throughout development, though a starvation response was detected only for LdCrT. In females, diapause‐related expression analysis in the whole body revealed an upregulation of both genes by post‐diapause, but a downregulation by diapause only for LdCrT. By contrast, males revealed no alteration in their diapause‐related expression pattern in the entire body for both genes. Fat body‐specific expression analysis of both genes in relation to diapause revealed the same expression pattern with no alteration in females and downregulation in males by post‐diapause. This study suggests that calcium‐binding chaperones play similar and possibly gender‐specific roles during diapause.  相似文献   
10.
Structural studies of membrane proteins, especially small membrane proteins, are associated with well-known experimental challenges. Complexation with monoclonal antibody fragments is a common strategy to augment such proteins; however, generating antibody fragments that specifically bind a target protein is not trivial. Here we identify a helical epitope, from the membrane-proximal external region (MPER) of the gp41-transmembrane subunit of the HIV envelope protein, that is recognized by several well-characterized antibodies and that can be fused as a contiguous extension of the N-terminal transmembrane helix of a broad range of membrane proteins. To analyze whether this MPER-epitope tag might aid structural studies of small membrane proteins, we determined an X-ray crystal structure of a membrane protein target that does not crystallize without the aid of crystallization chaperones, the Fluc fluoride channel, fused to the MPER epitope and in complex with antibody. We also demonstrate the utility of this approach for single particle electron microscopy with Fluc and two additional small membrane proteins that represent different membrane protein folds, AdiC and GlpF. These studies show that the MPER epitope provides a structurally defined, rigid docking site for antibody fragments that is transferable among diverse membrane proteins and can be engineered without prior structural information. Antibodies that bind to the MPER epitope serve as effective crystallization chaperones and electron microscopy fiducial markers, enabling structural studies of challenging small membrane proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号